def test_cache_copy(self): # fake up a PHA data set chans = numpy.arange(1, 11, dtype=numpy.int8) counts = numpy.ones(chans.size) # bin width is not 0.1 but something slightly different ebins = numpy.linspace(0.1, 1.2, num=chans.size + 1) elo = ebins[:-1] ehi = ebins[1:] dset = ui.DataPHA('test', chans, counts) # make sure ARF isn't 1 to make sure it's being applied arf = ui.create_arf(elo, ehi, specresp=0.7 * numpy.ones(chans.size)) rmf = ui.create_rmf(elo, ehi, e_min=elo, e_max=ehi) ui.set_data(1, dset) ui.set_arf(1, arf) ui.set_rmf(1, rmf) ui.set_source(ui.const1d.mdl) # again not 1 mdl.c0 = 8 # Copy the values from the plot structures, since get_xxx_plot # returns the same object so m1.y == m2.y will not note a difference. # d1y = ui.get_data_plot().y.copy() m1y = ui.get_model_plot().y.copy() s1y = ui.get_source_plot().y.copy() d2y = ui.get_data_plot().y.copy() m2y = ui.get_model_plot().y.copy() s2y = ui.get_source_plot().y.copy() rtol = 1.0e-4 atol = 1.0e-4 numpy.testing.assert_allclose(d1y, d2y, rtol, atol) numpy.testing.assert_allclose(m1y, m2y, rtol, atol) numpy.testing.assert_allclose(s1y, s2y, rtol, atol)
def _get_plot_data(ids, emin, emax): all_model = [] all_emodel = [] all_data = [] all_dataxerr = [] all_datayerr = [] all_edata = [] all_ratio = [] all_ratioerr = [] # Get data and model for each spectrum for sid in ids: d = shp.get_data_plot(sid) m = shp.get_model_plot(sid) e = (m.xhi + m.xlo) / 2 bins = np.concatenate((d.x - d.xerr / 2, [d.x[-1] + d.xerr[-1]])) model = m.y model_de = model * (m.xhi - m.xlo) model_binned, foo1, foo2 = binned_statistic( e, model_de, bins=bins, statistic="sum" ) model_binned = model_binned / d.xerr # delchi = resid/d.yerr ratio = d.y / model_binned mask_data = np.logical_and(d.x + d.xerr / 2 >= emin, d.x - d.xerr / 2 <= emax) mask_model = np.logical_and(e >= emin, e <= emax) all_model.append(model[mask_model]) all_emodel.append(e[mask_model]) all_data.append(d.y[mask_data]) all_dataxerr.append(d.xerr[mask_data]) all_datayerr.append(d.yerr[mask_data]) all_edata.append(d.x[mask_data]) all_ratio.append(ratio[mask_data]) all_ratioerr.append(d.yerr[mask_data] / model_binned[mask_data]) return ( all_model, all_emodel, all_data, all_dataxerr, all_datayerr, all_edata, all_ratio, all_ratioerr, )
def qq_export(id=None, bkg=False, outfile='qq.txt', elow=None, ehigh=None): """ Export Q-Q plot into a file for plotting. :param id: spectrum id to use (see get_bkg_plot/get_data_plot) :param bkg: whether to use get_bkg_plot or get_data_plot :param outfile: filename to write results into :param elow: low energy limit :param ehigh: low energy limit Example:: qq.qq_export('bg', outfile='my_bg_qq', elow=0.2, ehigh=10) """ # data d = ui.get_bkg_plot(id=id) if bkg else ui.get_data_plot(id=id) e = d.x mask = logical_and(e >= elow, e <= ehigh) data = d.y[mask].cumsum() d = ui.get_bkg_model_plot(id=id) if bkg else ui.get_model_plot(id=id) e = d.xlo mask = logical_and(e >= elow, e <= ehigh) e = e[mask] model = d.y[mask].cumsum() last_stat = ui.get_stat() ui.set_stat(ksstat) ks = ui.calc_stat() ui.set_stat(cvmstat) cvm = ui.calc_stat() ui.set_stat(adstat) ad = ui.calc_stat() ui.set_stat(last_stat) ad = ui.calc_stat() ui.set_stat('chi2gehrels') chi2 = ui.calc_stat() ui.set_stat('cstat') cstat = ui.calc_stat() ui.set_stat(last_stat) stats = dict(ks=ks, cvm=cvm, ad=ad, cstat=cstat, chi2=chi2) numpy.savetxt(outfile, numpy.transpose([e, data, model])) json.dump(stats, open(outfile + '.json', 'w'), indent=4)
def check_bad_grouping(exp_xlo, exp_xhi, exp_counts, lo1, hi1, lo2, hi2): """Common tests from test_grouped_pha_all_badXXX Sending in two ranges is a bit excessive but easiest thing to implement """ cts = ui.get_counts() assert cts == pytest.approx([exp_counts]) dplot = ui.get_data_plot() assert dplot.xlo == pytest.approx([exp_xlo]) assert dplot.xhi == pytest.approx([exp_xhi]) assert dplot.y == pytest.approx([exp_counts]) # ignore all the data ui.ignore(lo1, hi1) # can still plot cts = ui.get_counts() assert cts == pytest.approx([exp_counts]) cts = ui.get_counts(filter=True) assert len(cts) == 0 dplot = ui.get_data_plot() assert len(dplot.xlo) == 0 assert len(dplot.xhi) == 0 assert len(dplot.y) == 0 # ignore does not fail # ui.ignore(lo2, hi2) # we can restore the data ui.notice(None, None) cts = ui.get_counts() assert cts == pytest.approx([exp_counts]) dplot = ui.get_data_plot() assert dplot.xlo == pytest.approx([exp_xlo]) assert dplot.xhi == pytest.approx([exp_xhi]) assert dplot.y == pytest.approx([exp_counts]) # now ignore the bad channels (ie everything) # ui.ignore_bad() cts = ui.get_counts() assert len(cts) == 0 dplot = ui.get_data_plot() assert len(dplot.xlo) == 0 assert len(dplot.xhi) == 0 assert len(dplot.y) == 0 # there's nothing to notice (this line is an example of #790) ui.notice(lo1, hi1) cts = ui.get_counts() assert len(cts) == 0 dplot = ui.get_data_plot() assert len(dplot.xlo) == 0 assert len(dplot.xhi) == 0 assert len(dplot.y) == 0