Exemple #1
0
 def test_approx(self):
     self.assertEqual(
         smath.small_factor_at_least(100, 9, _force_approx=True), 25)
     self.assertEqual(
         smath.small_factor_at_least(100, 10, _force_approx=True), 10)
     self.assertEqual(
         smath.small_factor_at_least(100, 11, _force_approx=True), 25)
Exemple #2
0
	def test_approx(self):
		self.assertEqual(smath.small_factor_at_least(100, 9, _force_approx=True), 25)
		self.assertEqual(smath.small_factor_at_least(100, 10, _force_approx=True), 10)
		self.assertEqual(smath.small_factor_at_least(100, 11, _force_approx=True), 25)
Exemple #3
0
	def test_exact(self):
		self.assertEqual(smath.small_factor_at_least(100, 9), 10)
		self.assertEqual(smath.small_factor_at_least(100, 10), 10)
		self.assertEqual(smath.small_factor_at_least(100, 11), 20)
Exemple #4
0
def _make_filter_plan_1(input_rate, output_rate):
    assert input_rate > 0
    assert output_rate > 0
    
    total_decimation = max(1, int(input_rate // output_rate))
    
    using_rational_resampler = _use_rational_resampler and input_rate % 1 == 0 and output_rate % 1 == 0
    if using_rational_resampler:
        # If using rational resampler, don't decimate to the point that we get a fractional rate, if possible.
        input_rate = int(input_rate)
        output_rate = int(output_rate)
        if input_rate > output_rate:
            total_decimation = input_rate // small_factor_at_least(input_rate, output_rate)
        # print input_rate / total_decimation, total_decimation, input_rate, output_rate, input_rate // gcd(input_rate, output_rate)
        # TODO: Don't re-factorize unnecessarily
    
    stage_decimations = factorize(total_decimation)
    stage_decimations.reverse()
    
    # loop variables
    stage_designs = []
    stage_input_rate = input_rate
    last_index = len(stage_decimations) - 1
    
    if len(stage_decimations) == 0:
        # interpolation or nothing -- don't put it in the stages
        freq_xlate_stage = len(stage_designs)
        stage_designs.append(_FilterPlanXlateStage(
            rate=stage_input_rate))
    else:
        # decimation
        for i, stage_decimation in enumerate(stage_decimations):
            next_rate = stage_input_rate / stage_decimation
        
            stage_type = _FilterPlanFinalDecimatingStage if i == last_index else _FilterPlanDecimatingStage
            if i == 0:
                freq_xlate_stage = len(stage_designs)
                stage_designs.append(stage_type(
                    freq_xlating=True,
                    decimation=stage_decimation,
                    input_rate=stage_input_rate,
                    output_rate=next_rate))
            else:
                stage_designs.append(stage_type(
                    freq_xlating=False,
                    decimation=stage_decimation,
                    input_rate=stage_input_rate,
                    output_rate=next_rate))
        
            stage_input_rate = next_rate
    
    # final connection and resampling
    if stage_input_rate == output_rate:
        # exact multiple, no fractional resampling needed
        stage_designs.append(_FilterPlanCommentStage(
            comment='No final resampler stage.',
            rate=output_rate))
    else:
        # TODO: systematically combine resampler with final filter stage
        if using_rational_resampler:
            if stage_input_rate % 1 != 0:
                raise Exception("shouldn't happen", stage_input_rate)
            stage_input_rate = int(stage_input_rate)  # because of float division above
            common = gcd(output_rate, stage_input_rate)
            interpolation = output_rate // common
            decimation = stage_input_rate // common
            stage_designs.append(_FilterPlanRationalResamplerStage(
                interpolation=interpolation,
                decimation=decimation,
                input_rate=stage_input_rate,
                output_rate=output_rate))
        else:
            # TODO: cache filter computation as optfir is used and takes a noticeable time
            stage_designs.append(_FilterPlanPfbResamplerStage(
                resample_rate=float(output_rate) / stage_input_rate,
                input_rate=stage_input_rate,
                output_rate=output_rate))
    
    plan = _MultistageChannelFilterPlan(
        stage_designs=stage_designs,
        freq_xlate_stage=freq_xlate_stage,
        cutoff_freq=-1,
        transition_width=-1)
    
    return plan
Exemple #5
0
    def __init__(self,
                 name='Multistage Channel Filter',
                 input_rate=0,
                 output_rate=0,
                 cutoff_freq=0,
                 transition_width=0,
                 center_freq=0):
        assert input_rate > 0
        assert output_rate > 0
        assert cutoff_freq > 0
        assert transition_width > 0
        # cf. firdes.sanity_check_1f (which is private)
        # TODO better errors for other cases
        if cutoff_freq > output_rate / 2:
            # early check for better errors since our cascaded filters might be cryptically nonsense
            raise ValueError(
                'cutoff_freq (%s) is too high for output_rate (%s)' %
                (cutoff_freq, output_rate))

        gr.hier_block2.__init__(
            self,
            name,
            gr.io_signature(1, 1, gr.sizeof_gr_complex * 1),
            gr.io_signature(1, 1, gr.sizeof_gr_complex * 1),
        )

        self.cutoff_freq = cutoff_freq
        self.transition_width = transition_width

        total_decimation = max(1, int(input_rate // output_rate))

        using_rational_resampler = _use_rational_resampler and input_rate % 1 == 0 and output_rate % 1 == 0
        if using_rational_resampler:
            # If using rational resampler, don't decimate to the point that we get a fractional rate, if possible.
            input_rate = int(input_rate)
            output_rate = int(output_rate)
            if input_rate > output_rate:
                total_decimation = input_rate // small_factor_at_least(
                    input_rate, output_rate)
            # print input_rate / total_decimation, total_decimation, input_rate, output_rate, input_rate // gcd(input_rate, output_rate)
            # TODO: Don't re-factorize unnecessarily

        stage_decimations = factorize(total_decimation)
        stage_decimations.reverse()

        self.stages = []

        # loop variables
        prev_block = self
        stage_input_rate = input_rate
        last_index = len(stage_decimations) - 1

        if len(stage_decimations) == 0:
            # interpolation or nothing -- don't put it in the stages
            # TODO: consider using rotator block instead (has different API)
            self.freq_filter_block = grfilter.freq_xlating_fir_filter_ccc(
                1, [1], center_freq, stage_input_rate)
            self.connect(prev_block, self.freq_filter_block)
            prev_block = self.freq_filter_block
        else:
            # decimation
            for i, stage_decimation in enumerate(stage_decimations):
                next_rate = stage_input_rate / stage_decimation

                if i == 0:
                    stage_filter = grfilter.freq_xlating_fir_filter_ccc(
                        stage_decimation,
                        [0],  # placeholder
                        center_freq,
                        stage_input_rate)
                    self.freq_filter_block = stage_filter
                else:
                    taps = self.__stage_taps(i == last_index, stage_input_rate,
                                             next_rate)
                    if len(taps) > 10:
                        stage_filter = grfilter.fft_filter_ccc(
                            stage_decimation, taps, 1)
                    else:
                        stage_filter = grfilter.fir_filter_ccc(
                            stage_decimation, taps)

                self.stages.append((stage_filter, stage_input_rate, next_rate))

                self.connect(prev_block, stage_filter)
                prev_block = stage_filter
                stage_input_rate = next_rate

        # final connection and resampling
        if stage_input_rate == output_rate:
            # exact multiple, no fractional resampling needed
            self.connect(prev_block, self)
            self.__resampler_explanation = 'No final resampler stage.'
        else:
            # TODO: systematically combine resampler with final filter stage
            if using_rational_resampler:
                if stage_input_rate % 1 != 0:
                    raise Exception("shouldn't happen", stage_input_rate)
                stage_input_rate = int(
                    stage_input_rate)  # because of float division above
                common = gcd(output_rate, stage_input_rate)
                interpolation = output_rate // common
                decimation = stage_input_rate // common
                self.__resampler_explanation = 'rational_resampler by %s/%s (stage rates %s/%s)' % (
                    interpolation, decimation, output_rate, stage_input_rate)
                resampler = rational_resampler.rational_resampler_ccf(
                    interpolation=interpolation, decimation=decimation)
            else:
                # TODO: cache filter computation as optfir is used and takes a noticeable time
                self.__resampler_explanation = 'arb_resampler %s/%s = %s' % (
                    output_rate, stage_input_rate,
                    float(output_rate) / stage_input_rate)
                resampler = pfb.arb_resampler_ccf(
                    float(output_rate) / stage_input_rate)
            self.connect(prev_block, resampler, self)

        # TODO: Shouldn't be necessary since we compute the taps in the loop above...
        self.__do_taps()
Exemple #6
0
 def test_exact(self):
     self.assertEqual(smath.small_factor_at_least(100, 9), 10)
     self.assertEqual(smath.small_factor_at_least(100, 10), 10)
     self.assertEqual(smath.small_factor_at_least(100, 11), 20)
Exemple #7
0
 def __init__(self,
         name='Multistage Channel Filter',
         input_rate=0,
         output_rate=0,
         cutoff_freq=0,
         transition_width=0,
         center_freq=0):
     assert input_rate > 0
     assert output_rate > 0
     assert cutoff_freq > 0
     assert transition_width > 0
     # cf. firdes.sanity_check_1f (which is private)
     # TODO better errors for other cases
     if cutoff_freq > output_rate / 2:
         # early check for better errors since our cascaded filters might be cryptically nonsense
         raise ValueError('cutoff_freq (%s) is too high for output_rate (%s)' % (cutoff_freq, output_rate))
     
     gr.hier_block2.__init__(
         self, name,
         gr.io_signature(1, 1, gr.sizeof_gr_complex * 1),
         gr.io_signature(1, 1, gr.sizeof_gr_complex * 1),
     )
     
     self.cutoff_freq = cutoff_freq
     self.transition_width = transition_width
     
     total_decimation = max(1, int(input_rate // output_rate))
     
     using_rational_resampler = _use_rational_resampler and input_rate % 1 == 0 and output_rate % 1 == 0
     if using_rational_resampler:
         # If using rational resampler, don't decimate to the point that we get a fractional rate, if possible.
         input_rate = int(input_rate)
         output_rate = int(output_rate)
         if input_rate > output_rate:
             total_decimation = input_rate // small_factor_at_least(input_rate, output_rate)
         # print input_rate / total_decimation, total_decimation, input_rate, output_rate, input_rate // gcd(input_rate, output_rate)
         # TODO: Don't re-factorize unnecessarily
     
     stage_decimations = factorize(total_decimation)
     stage_decimations.reverse()
     
     self.stages = []
     
     # loop variables
     prev_block = self
     stage_input_rate = input_rate
     last_index = len(stage_decimations) - 1
     
     if len(stage_decimations) == 0:
         # interpolation or nothing -- don't put it in the stages
         # TODO: consider using rotator block instead (has different API)
         self.freq_filter_block = grfilter.freq_xlating_fir_filter_ccc(
             1,
             [1],
             center_freq,
             stage_input_rate)
         self.connect(prev_block, self.freq_filter_block)
         prev_block = self.freq_filter_block
     else:
         # decimation
         for i, stage_decimation in enumerate(stage_decimations):
             next_rate = stage_input_rate / stage_decimation
         
             if i == 0:
                 stage_filter = grfilter.freq_xlating_fir_filter_ccc(
                     stage_decimation,
                     [0],  # placeholder
                     center_freq,
                     stage_input_rate)
                 self.freq_filter_block = stage_filter
             else:
                 taps = self.__stage_taps(i == last_index, stage_input_rate, next_rate)
                 if len(taps) > 10:
                     stage_filter = grfilter.fft_filter_ccc(stage_decimation, taps, 1)
                 else:
                     stage_filter = grfilter.fir_filter_ccc(stage_decimation, taps)
         
             self.stages.append((stage_filter, stage_input_rate, next_rate))
         
             self.connect(prev_block, stage_filter)
             prev_block = stage_filter
             stage_input_rate = next_rate
     
     # final connection and resampling
     if stage_input_rate == output_rate:
         # exact multiple, no fractional resampling needed
         self.connect(prev_block, self)
         self.__resampler_explanation = 'No final resampler stage.'
     else:
         # TODO: systematically combine resampler with final filter stage
         if using_rational_resampler:
             if stage_input_rate % 1 != 0:
                 raise Exception("shouldn't happen", stage_input_rate)
             stage_input_rate = int(stage_input_rate)  # because of float division above
             common = gcd(output_rate, stage_input_rate)
             interpolation = output_rate // common
             decimation = stage_input_rate // common
             self.__resampler_explanation = 'rational_resampler by %s/%s (stage rates %s/%s)' % (interpolation, decimation, output_rate, stage_input_rate)
             resampler = rational_resampler.rational_resampler_ccf(
                 interpolation=interpolation,
                 decimation=decimation)
         else:
             # TODO: cache filter computation as optfir is used and takes a noticeable time
             self.__resampler_explanation = 'arb_resampler %s/%s = %s' % (output_rate, stage_input_rate, float(output_rate) / stage_input_rate)
             resampler = pfb.arb_resampler_ccf(float(output_rate) / stage_input_rate)
         self.connect(
             prev_block,
             resampler,
             self)
     
     # TODO: Shouldn't be necessary since we compute the taps in the loop above...
     self.__do_taps()
Exemple #8
0
def _make_filter_plan_1(input_rate, output_rate):
    assert input_rate > 0
    assert output_rate > 0

    total_decimation = max(1, int(input_rate // output_rate))

    using_rational_resampler = _use_rational_resampler and input_rate % 1 == 0 and output_rate % 1 == 0
    if using_rational_resampler:
        # If using rational resampler, don't decimate to the point that we get a fractional rate, if possible.
        input_rate = int(input_rate)
        output_rate = int(output_rate)
        if input_rate > output_rate:
            total_decimation = input_rate // small_factor_at_least(
                input_rate, output_rate)
        # print input_rate / total_decimation, total_decimation, input_rate, output_rate, input_rate // gcd(input_rate, output_rate)
        # TODO: Don't re-factorize unnecessarily

    stage_decimations = factorize(total_decimation)
    stage_decimations.reverse()

    # loop variables
    stage_designs = []
    stage_input_rate = input_rate
    last_index = len(stage_decimations) - 1

    if len(stage_decimations) == 0:
        # interpolation or nothing -- don't put it in the stages
        freq_xlate_stage = len(stage_designs)
        stage_designs.append(_FilterPlanXlateStage(rate=stage_input_rate))
    else:
        # decimation
        for i, stage_decimation in enumerate(stage_decimations):
            next_rate = stage_input_rate / stage_decimation

            stage_type = _FilterPlanFinalDecimatingStage if i == last_index else _FilterPlanDecimatingStage
            if i == 0:
                freq_xlate_stage = len(stage_designs)
                stage_designs.append(
                    stage_type(freq_xlating=True,
                               decimation=stage_decimation,
                               input_rate=stage_input_rate,
                               output_rate=next_rate))
            else:
                stage_designs.append(
                    stage_type(freq_xlating=False,
                               decimation=stage_decimation,
                               input_rate=stage_input_rate,
                               output_rate=next_rate))

            stage_input_rate = next_rate

    # final connection and resampling
    if stage_input_rate == output_rate:
        # exact multiple, no fractional resampling needed
        stage_designs.append(
            _FilterPlanCommentStage(comment='No final resampler stage.',
                                    rate=output_rate))
    else:
        # TODO: systematically combine resampler with final filter stage
        if using_rational_resampler:
            if stage_input_rate % 1 != 0:
                raise Exception("shouldn't happen", stage_input_rate)
            stage_input_rate = int(
                stage_input_rate)  # because of float division above
            common = gcd(output_rate, stage_input_rate)
            interpolation = output_rate // common
            decimation = stage_input_rate // common
            stage_designs.append(
                _FilterPlanRationalResamplerStage(interpolation=interpolation,
                                                  decimation=decimation,
                                                  input_rate=stage_input_rate,
                                                  output_rate=output_rate))
        else:
            # TODO: cache filter computation as optfir is used and takes a noticeable time
            stage_designs.append(
                _FilterPlanPfbResamplerStage(resample_rate=float(output_rate) /
                                             stage_input_rate,
                                             input_rate=stage_input_rate,
                                             output_rate=output_rate))

    plan = _MultistageChannelFilterPlan(stage_designs=stage_designs,
                                        freq_xlate_stage=freq_xlate_stage,
                                        cutoff_freq=-1,
                                        transition_width=-1)

    return plan