def converter_diffusionmaps_modular(data,t): from shogun.Features import RealFeatures from shogun.Converter import DiffusionMaps from shogun.Kernel import GaussianKernel features = RealFeatures(data) converter = DiffusionMaps() converter.set_target_dim(1) converter.set_kernel(GaussianKernel(10,10.0)) converter.set_t(t) converter.apply(features) return features
def converter_diffusionmaps_modular(data, t): from shogun.Features import RealFeatures from shogun.Converter import DiffusionMaps from shogun.Kernel import GaussianKernel features = RealFeatures(data) converter = DiffusionMaps() converter.set_target_dim(1) converter.set_kernel(GaussianKernel(10, 10.0)) converter.set_t(t) converter.apply(features) return features
def converter_diffusionmaps_modular(data, t): try: from shogun.Features import RealFeatures from shogun.Converter import DiffusionMaps from shogun.Kernel import GaussianKernel features = RealFeatures(data) converter = DiffusionMaps() converter.set_target_dim(1) converter.set_kernel(GaussianKernel(10, 10.0)) converter.set_t(t) converter.apply(features) return features except ImportError: print('No Eigen3 available')
def converter_diffusionmaps_modular (data,t): try: from shogun.Features import RealFeatures from shogun.Converter import DiffusionMaps from shogun.Kernel import GaussianKernel features = RealFeatures(data) converter = DiffusionMaps() converter.set_target_dim(1) converter.set_kernel(GaussianKernel(10,10.0)) converter.set_t(t) converter.apply(features) return features except ImportError: print('No Eigen3 available')
lmds = MultidimensionalScaling() lmds.set_landmark(True) lmds.set_landmark_number(20) converters.append( (lmds, "Landmark MDS with %d landmarks" % lmds.get_landmark_number())) from shogun.Converter import Isomap cisomap = Isomap() cisomap.set_k(9) converters.append((cisomap, "Isomap with k=%d" % cisomap.get_k())) from shogun.Converter import DiffusionMaps from shogun.Kernel import GaussianKernel dm = DiffusionMaps() dm.set_t(2) dm.set_width(1000.0) converters.append( (dm, "Diffusion Maps with t=%d, sigma=%f" % (dm.get_t(), dm.get_width()))) from shogun.Converter import HessianLocallyLinearEmbedding hlle = HessianLocallyLinearEmbedding() hlle.set_k(6) converters.append((hlle, "Hessian LLE with k=%d" % (hlle.get_k()))) from shogun.Converter import LocalTangentSpaceAlignment ltsa = LocalTangentSpaceAlignment() ltsa.set_k(6) converters.append((ltsa, "LTSA with k=%d" % (ltsa.get_k()))) from shogun.Converter import LaplacianEigenmaps
lmds = MultidimensionalScaling() lmds.set_landmark(True) lmds.set_landmark_number(20) converters.append( (lmds, "Landmark MDS with %d landmarks" % lmds.get_landmark_number())) from shogun.Converter import Isomap cisomap = Isomap() cisomap.set_k(9) converters.append((cisomap, "Isomap with k=%d" % cisomap.get_k())) from shogun.Converter import DiffusionMaps from shogun.Kernel import GaussianKernel dm = DiffusionMaps() dm.set_t(20) kernel = GaussianKernel(100, 1.0) dm.set_kernel(kernel) converters.append( (dm, "Diffusion Maps with t=%d, sigma=%f" % (dm.get_t(), kernel.get_width()))) from shogun.Converter import HessianLocallyLinearEmbedding hlle = HessianLocallyLinearEmbedding() hlle.set_k(6) converters.append((hlle, "Hessian LLE with k=%d" % (hlle.get_k()))) from shogun.Converter import LocalTangentSpaceAlignment ltsa = LocalTangentSpaceAlignment() ltsa.set_k(6) converters.append((ltsa, "LTSA with k=%d" % (ltsa.get_k())))
converters.append((mds, "Classic MDS")) lmds = MultidimensionalScaling() lmds.set_landmark(True) lmds.set_landmark_number(20) converters.append((lmds,"Landmark MDS with %d landmarks" % lmds.get_landmark_number())) from shogun.Converter import Isomap cisomap = Isomap() cisomap.set_k(9) converters.append((cisomap,"Isomap with k=%d" % cisomap.get_k())) from shogun.Converter import DiffusionMaps from shogun.Kernel import GaussianKernel dm = DiffusionMaps() dm.set_t(20) kernel = GaussianKernel(100,1.0) dm.set_kernel(kernel) converters.append((dm,"Diffusion Maps with t=%d, sigma=%f" % (dm.get_t(),kernel.get_width()))) from shogun.Converter import HessianLocallyLinearEmbedding hlle = HessianLocallyLinearEmbedding() hlle.set_k(6) converters.append((hlle,"Hessian LLE with k=%d" % (hlle.get_k()))) from shogun.Converter import LocalTangentSpaceAlignment ltsa = LocalTangentSpaceAlignment() ltsa.set_k(6) converters.append((ltsa,"LTSA with k=%d" % (ltsa.get_k()))) from shogun.Converter import LaplacianEigenmaps
converters.append((mds, "Classic MDS")) lmds = MultidimensionalScaling() lmds.set_landmark(True) lmds.set_landmark_number(20) converters.append((lmds,"Landmark MDS with %d landmarks" % lmds.get_landmark_number())) from shogun.Converter import Isomap cisomap = Isomap() cisomap.set_k(9) converters.append((cisomap,"Isomap with k=%d" % cisomap.get_k())) from shogun.Converter import DiffusionMaps from shogun.Kernel import GaussianKernel dm = DiffusionMaps() dm.set_t(2) dm.set_width(1000.0) converters.append((dm,"Diffusion Maps with t=%d, sigma=%.1f" % (dm.get_t(),dm.get_width()))) from shogun.Converter import HessianLocallyLinearEmbedding hlle = HessianLocallyLinearEmbedding() hlle.set_k(6) converters.append((hlle,"Hessian LLE with k=%d" % (hlle.get_k()))) from shogun.Converter import LocalTangentSpaceAlignment ltsa = LocalTangentSpaceAlignment() ltsa.set_k(6) converters.append((ltsa,"LTSA with k=%d" % (ltsa.get_k()))) from shogun.Converter import LaplacianEigenmaps le = LaplacianEigenmaps()
converters.append((mds, "Classic MDS")) lmds = MultidimensionalScaling() lmds.set_landmark(True) lmds.set_landmark_number(20) converters.append((lmds,"Landmark MDS with %d landmarks" % lmds.get_landmark_number())) from shogun.Converter import Isomap cisomap = Isomap() cisomap.set_k(9) converters.append((cisomap,"Isomap with k=%d" % cisomap.get_k())) from shogun.Converter import DiffusionMaps from shogun.Kernel import GaussianKernel dm = DiffusionMaps() dm.set_t(1) kernel = GaussianKernel(100,10.0) dm.set_kernel(kernel) converters.append((dm,"Diffusion Maps with t=%d, sigma=%f" % (dm.get_t(),kernel.get_width()))) from shogun.Converter import HessianLocallyLinearEmbedding hlle = HessianLocallyLinearEmbedding() hlle.set_k(6) converters.append((hlle,"Hessian LLE with k=%d" % (hlle.get_k()))) from shogun.Converter import LocalTangentSpaceAlignment ltsa = LocalTangentSpaceAlignment() ltsa.set_k(6) converters.append((ltsa,"LTSA with k=%d" % (ltsa.get_k()))) from shogun.Converter import LaplacianEigenmaps