def kernel_fisher_modular(
    fm_train_dna=traindat,
    fm_test_dna=testdat,
    label_train_dna=label_traindat,
    N=1,
    M=4,
    pseudo=1e-1,
    order=1,
    gap=0,
    reverse=False,
    kargs=[1, False, True],
):

    from shogun.Features import StringCharFeatures, StringWordFeatures, FKFeatures, DNA
    from shogun.Kernel import PolyKernel
    from shogun.Distribution import HMM, BW_NORMAL  # , MSG_DEBUG

    # train HMM for positive class
    charfeat = StringCharFeatures(fm_hmm_pos, DNA)
    # charfeat.io.set_loglevel(MSG_DEBUG)
    hmm_pos_train = StringWordFeatures(charfeat.get_alphabet())
    hmm_pos_train.obtain_from_char(charfeat, order - 1, order, gap, reverse)
    pos = HMM(hmm_pos_train, N, M, pseudo)
    pos.baum_welch_viterbi_train(BW_NORMAL)

    # train HMM for negative class
    charfeat = StringCharFeatures(fm_hmm_neg, DNA)
    hmm_neg_train = StringWordFeatures(charfeat.get_alphabet())
    hmm_neg_train.obtain_from_char(charfeat, order - 1, order, gap, reverse)
    neg = HMM(hmm_neg_train, N, M, pseudo)
    neg.baum_welch_viterbi_train(BW_NORMAL)

    # Kernel training data
    charfeat = StringCharFeatures(fm_train_dna, DNA)
    wordfeats_train = StringWordFeatures(charfeat.get_alphabet())
    wordfeats_train.obtain_from_char(charfeat, order - 1, order, gap, reverse)

    # Kernel testing data
    charfeat = StringCharFeatures(fm_test_dna, DNA)
    wordfeats_test = StringWordFeatures(charfeat.get_alphabet())
    wordfeats_test.obtain_from_char(charfeat, order - 1, order, gap, reverse)

    # get kernel on training data
    pos.set_observations(wordfeats_train)
    neg.set_observations(wordfeats_train)
    feats_train = FKFeatures(10, pos, neg)
    feats_train.set_opt_a(-1)  # estimate prior
    kernel = PolyKernel(feats_train, feats_train, *kargs)
    km_train = kernel.get_kernel_matrix()

    # get kernel on testing data
    pos_clone = HMM(pos)
    neg_clone = HMM(neg)
    pos_clone.set_observations(wordfeats_test)
    neg_clone.set_observations(wordfeats_test)
    feats_test = FKFeatures(10, pos_clone, neg_clone)
    feats_test.set_a(feats_train.get_a())  # use prior from training data
    kernel.init(feats_train, feats_test)
    km_test = kernel.get_kernel_matrix()
    return km_train, km_test, kernel
Exemple #2
0
def kernel_fisher_modular(fm_train_dna=traindat,
                          fm_test_dna=testdat,
                          label_train_dna=label_traindat,
                          N=1,
                          M=4,
                          pseudo=1e-1,
                          order=1,
                          gap=0,
                          reverse=False,
                          kargs=[1, False, True]):

    from shogun.Features import StringCharFeatures, StringWordFeatures, FKFeatures, DNA
    from shogun.Kernel import PolyKernel
    from shogun.Distribution import HMM, BW_NORMAL  #, MSG_DEBUG

    # train HMM for positive class
    charfeat = StringCharFeatures(fm_hmm_pos, DNA)
    #charfeat.io.set_loglevel(MSG_DEBUG)
    hmm_pos_train = StringWordFeatures(charfeat.get_alphabet())
    hmm_pos_train.obtain_from_char(charfeat, order - 1, order, gap, reverse)
    pos = HMM(hmm_pos_train, N, M, pseudo)
    pos.baum_welch_viterbi_train(BW_NORMAL)

    # train HMM for negative class
    charfeat = StringCharFeatures(fm_hmm_neg, DNA)
    hmm_neg_train = StringWordFeatures(charfeat.get_alphabet())
    hmm_neg_train.obtain_from_char(charfeat, order - 1, order, gap, reverse)
    neg = HMM(hmm_neg_train, N, M, pseudo)
    neg.baum_welch_viterbi_train(BW_NORMAL)

    # Kernel training data
    charfeat = StringCharFeatures(fm_train_dna, DNA)
    wordfeats_train = StringWordFeatures(charfeat.get_alphabet())
    wordfeats_train.obtain_from_char(charfeat, order - 1, order, gap, reverse)

    # Kernel testing data
    charfeat = StringCharFeatures(fm_test_dna, DNA)
    wordfeats_test = StringWordFeatures(charfeat.get_alphabet())
    wordfeats_test.obtain_from_char(charfeat, order - 1, order, gap, reverse)

    # get kernel on training data
    pos.set_observations(wordfeats_train)
    neg.set_observations(wordfeats_train)
    feats_train = FKFeatures(10, pos, neg)
    feats_train.set_opt_a(-1)  #estimate prior
    kernel = PolyKernel(feats_train, feats_train, *kargs)
    km_train = kernel.get_kernel_matrix()

    # get kernel on testing data
    pos_clone = HMM(pos)
    neg_clone = HMM(neg)
    pos_clone.set_observations(wordfeats_test)
    neg_clone.set_observations(wordfeats_test)
    feats_test = FKFeatures(10, pos_clone, neg_clone)
    feats_test.set_a(feats_train.get_a())  #use prior from training data
    kernel.init(feats_train, feats_test)
    km_test = kernel.get_kernel_matrix()
    return km_train, km_test, kernel
def kernel_top_modular(
    fm_train_dna=traindat,
    fm_test_dna=testdat,
    label_train_dna=label_traindat,
    pseudo=1e-1,
    order=1,
    gap=0,
    reverse=False,
    kargs=[1, False, True],
):
    from shogun.Features import StringCharFeatures, StringWordFeatures, TOPFeatures, DNA
    from shogun.Kernel import PolyKernel
    from shogun.Distribution import HMM, BW_NORMAL

    N = 1  # toy HMM with 1 state
    M = 4  # 4 observations -> DNA

    # train HMM for positive class
    charfeat = StringCharFeatures(fm_hmm_pos, DNA)
    hmm_pos_train = StringWordFeatures(charfeat.get_alphabet())
    hmm_pos_train.obtain_from_char(charfeat, order - 1, order, gap, reverse)
    pos = HMM(hmm_pos_train, N, M, pseudo)
    pos.baum_welch_viterbi_train(BW_NORMAL)

    # train HMM for negative class
    charfeat = StringCharFeatures(fm_hmm_neg, DNA)
    hmm_neg_train = StringWordFeatures(charfeat.get_alphabet())
    hmm_neg_train.obtain_from_char(charfeat, order - 1, order, gap, reverse)
    neg = HMM(hmm_neg_train, N, M, pseudo)
    neg.baum_welch_viterbi_train(BW_NORMAL)

    # Kernel training data
    charfeat = StringCharFeatures(fm_train_dna, DNA)
    wordfeats_train = StringWordFeatures(charfeat.get_alphabet())
    wordfeats_train.obtain_from_char(charfeat, order - 1, order, gap, reverse)

    # Kernel testing data
    charfeat = StringCharFeatures(fm_test_dna, DNA)
    wordfeats_test = StringWordFeatures(charfeat.get_alphabet())
    wordfeats_test.obtain_from_char(charfeat, order - 1, order, gap, reverse)

    # get kernel on training data
    pos.set_observations(wordfeats_train)
    neg.set_observations(wordfeats_train)
    feats_train = TOPFeatures(10, pos, neg, False, False)
    kernel = PolyKernel(feats_train, feats_train, *kargs)
    km_train = kernel.get_kernel_matrix()

    # get kernel on testing data
    pos_clone = HMM(pos)
    neg_clone = HMM(neg)
    pos_clone.set_observations(wordfeats_test)
    neg_clone.set_observations(wordfeats_test)
    feats_test = TOPFeatures(10, pos_clone, neg_clone, False, False)
    kernel.init(feats_train, feats_test)
    km_test = kernel.get_kernel_matrix()
    return km_train, km_test, kernel
Exemple #4
0
def kernel_top_modular(fm_train_dna=traindat,
                       fm_test_dna=testdat,
                       label_train_dna=label_traindat,
                       pseudo=1e-1,
                       order=1,
                       gap=0,
                       reverse=False,
                       kargs=[1, False, True]):
    from shogun.Features import StringCharFeatures, StringWordFeatures, TOPFeatures, DNA
    from shogun.Kernel import PolyKernel
    from shogun.Distribution import HMM, BW_NORMAL

    N = 1  # toy HMM with 1 state
    M = 4  # 4 observations -> DNA

    # train HMM for positive class
    charfeat = StringCharFeatures(fm_hmm_pos, DNA)
    hmm_pos_train = StringWordFeatures(charfeat.get_alphabet())
    hmm_pos_train.obtain_from_char(charfeat, order - 1, order, gap, reverse)
    pos = HMM(hmm_pos_train, N, M, pseudo)
    pos.baum_welch_viterbi_train(BW_NORMAL)

    # train HMM for negative class
    charfeat = StringCharFeatures(fm_hmm_neg, DNA)
    hmm_neg_train = StringWordFeatures(charfeat.get_alphabet())
    hmm_neg_train.obtain_from_char(charfeat, order - 1, order, gap, reverse)
    neg = HMM(hmm_neg_train, N, M, pseudo)
    neg.baum_welch_viterbi_train(BW_NORMAL)

    # Kernel training data
    charfeat = StringCharFeatures(fm_train_dna, DNA)
    wordfeats_train = StringWordFeatures(charfeat.get_alphabet())
    wordfeats_train.obtain_from_char(charfeat, order - 1, order, gap, reverse)

    # Kernel testing data
    charfeat = StringCharFeatures(fm_test_dna, DNA)
    wordfeats_test = StringWordFeatures(charfeat.get_alphabet())
    wordfeats_test.obtain_from_char(charfeat, order - 1, order, gap, reverse)

    # get kernel on training data
    pos.set_observations(wordfeats_train)
    neg.set_observations(wordfeats_train)
    feats_train = TOPFeatures(10, pos, neg, False, False)
    kernel = PolyKernel(feats_train, feats_train, *kargs)
    km_train = kernel.get_kernel_matrix()

    # get kernel on testing data
    pos_clone = HMM(pos)
    neg_clone = HMM(neg)
    pos_clone.set_observations(wordfeats_test)
    neg_clone.set_observations(wordfeats_test)
    feats_test = TOPFeatures(10, pos_clone, neg_clone, False, False)
    kernel.init(feats_train, feats_test)
    km_test = kernel.get_kernel_matrix()
    return km_train, km_test, kernel
def fisher ():
	print "Fisher Kernel"
	from shogun.Features import StringCharFeatures, StringWordFeatures, FKFeatures, DNA
	from shogun.Kernel import PolyKernel
	from shogun.Distribution import HMM, BW_NORMAL

	N=1 # toy HMM with 1 state 
	M=4 # 4 observations -> DNA
	pseudo=1e-1
	order=1
	gap=0
	reverse=False
	kargs=[1, False, True]

	# train HMM for positive class
	charfeat=StringCharFeatures(fm_hmm_pos, DNA)
	hmm_pos_train=StringWordFeatures(charfeat.get_alphabet())
	hmm_pos_train.obtain_from_char(charfeat, order-1, order, gap, reverse)
	pos=HMM(hmm_pos_train, N, M, pseudo)
	pos.baum_welch_viterbi_train(BW_NORMAL)

	# train HMM for negative class
	charfeat=StringCharFeatures(fm_hmm_neg, DNA)
	hmm_neg_train=StringWordFeatures(charfeat.get_alphabet())
	hmm_neg_train.obtain_from_char(charfeat, order-1, order, gap, reverse)
	neg=HMM(hmm_neg_train, N, M, pseudo)
	neg.baum_welch_viterbi_train(BW_NORMAL)

	# Kernel training data
	charfeat=StringCharFeatures(fm_train_dna, DNA)
	wordfeats_train=StringWordFeatures(charfeat.get_alphabet())
	wordfeats_train.obtain_from_char(charfeat, order-1, order, gap, reverse)

	# Kernel testing data
	charfeat=StringCharFeatures(fm_test_dna, DNA)
	wordfeats_test=StringWordFeatures(charfeat.get_alphabet())
	wordfeats_test.obtain_from_char(charfeat, order-1, order, gap, reverse)

	# get kernel on training data
	pos.set_observations(wordfeats_train)
	neg.set_observations(wordfeats_train)
	feats_train=FKFeatures(10, pos, neg)
	feats_train.set_opt_a(-1) #estimate prior
	kernel=PolyKernel(feats_train, feats_train, *kargs)
	km_train=kernel.get_kernel_matrix()

	# get kernel on testing data
	pos_clone=HMM(pos)
	neg_clone=HMM(neg)
	pos_clone.set_observations(wordfeats_test)
	neg_clone.set_observations(wordfeats_test)
	feats_test=FKFeatures(10, pos_clone, neg_clone)
	feats_test.set_a(feats_train.get_a()) #use prior from training data
	kernel.init(feats_train, feats_test)
	km_test=kernel.get_kernel_matrix()
def kernel_poly_modular (fm_train_real=traindat,fm_test_real=testdat,degree=4,inhomogene=False,
	use_normalization=True):
	from shogun.Features import RealFeatures
	from shogun.Kernel import PolyKernel

	feats_train=RealFeatures(fm_train_real)
	feats_test=RealFeatures(fm_test_real)

	kernel=PolyKernel(
		feats_train, feats_train, degree, inhomogene, use_normalization)

	km_train=kernel.get_kernel_matrix()
	kernel.init(feats_train, feats_test)
	km_test=kernel.get_kernel_matrix()
	return km_train,km_test,kernel
def poly ():
	print 'Poly'
	from shogun.Features import RealFeatures
	from shogun.Kernel import PolyKernel

	feats_train=RealFeatures(fm_train_real)
	feats_test=RealFeatures(fm_test_real)
	degree=4
	inhomogene=False
	use_normalization=True
	
	kernel=PolyKernel(
		feats_train, feats_train, degree, inhomogene, use_normalization)

	km_train=kernel.get_kernel_matrix()
	kernel.init(feats_train, feats_test)
	km_test=kernel.get_kernel_matrix()
def kernel_combined_custom_poly_modular(fm_train_real=traindat,
                                        fm_test_real=testdat,
                                        fm_label_twoclass=label_traindat):
    from shogun.Features import CombinedFeatures, RealFeatures, Labels
    from shogun.Kernel import CombinedKernel, PolyKernel, CustomKernel
    from shogun.Classifier import LibSVM

    kernel = CombinedKernel()
    feats_train = CombinedFeatures()

    tfeats = RealFeatures(fm_train_real)
    tkernel = PolyKernel(10, 3)
    tkernel.init(tfeats, tfeats)
    K = tkernel.get_kernel_matrix()
    kernel.append_kernel(CustomKernel(K))

    subkfeats_train = RealFeatures(fm_train_real)
    feats_train.append_feature_obj(subkfeats_train)
    subkernel = PolyKernel(10, 2)
    kernel.append_kernel(subkernel)

    kernel.init(feats_train, feats_train)

    labels = Labels(fm_label_twoclass)
    svm = LibSVM(1.0, kernel, labels)
    svm.train()

    kernel = CombinedKernel()
    feats_pred = CombinedFeatures()

    pfeats = RealFeatures(fm_test_real)
    tkernel = PolyKernel(10, 3)
    tkernel.init(tfeats, pfeats)
    K = tkernel.get_kernel_matrix()
    kernel.append_kernel(CustomKernel(K))

    subkfeats_test = RealFeatures(fm_test_real)
    feats_pred.append_feature_obj(subkfeats_test)
    subkernel = PolyKernel(10, 2)
    kernel.append_kernel(subkernel)
    kernel.init(feats_train, feats_pred)

    svm.set_kernel(kernel)
    svm.classify()
    km_train = kernel.get_kernel_matrix()
    return km_train, kernel
def kernel_poly_modular(fm_train_real=traindat,
                        fm_test_real=testdat,
                        degree=4,
                        inhomogene=False,
                        use_normalization=True):
    from shogun.Features import RealFeatures
    from shogun.Kernel import PolyKernel

    feats_train = RealFeatures(fm_train_real)
    feats_test = RealFeatures(fm_test_real)

    kernel = PolyKernel(feats_train, feats_train, degree, inhomogene,
                        use_normalization)

    km_train = kernel.get_kernel_matrix()
    kernel.init(feats_train, feats_test)
    km_test = kernel.get_kernel_matrix()
    return km_train, km_test, kernel
def kernel_sparse_poly_modular (fm_train_real=traindat,fm_test_real=testdat,
		 size_cache=10,degree=3,inhomogene=True ):

	from shogun.Features import SparseRealFeatures
	from shogun.Kernel import PolyKernel

	feats_train=SparseRealFeatures(fm_train_real)
	feats_test=SparseRealFeatures(fm_test_real)



	kernel=PolyKernel(feats_train, feats_train, size_cache, degree,
		inhomogene)
	km_train=kernel.get_kernel_matrix()

	kernel.init(feats_train, feats_test)
	km_test=kernel.get_kernel_matrix()
	return km_train,km_test,kernel
def kernel_combined_custom_poly_modular(fm_train_real = traindat,fm_test_real = testdat,fm_label_twoclass=label_traindat):
    from shogun.Features import CombinedFeatures, RealFeatures, BinaryLabels
    from shogun.Kernel import CombinedKernel, PolyKernel, CustomKernel
    from shogun.Classifier import LibSVM
   
    kernel = CombinedKernel()
    feats_train = CombinedFeatures()
    
    tfeats = RealFeatures(fm_train_real)
    tkernel = PolyKernel(10,3)
    tkernel.init(tfeats, tfeats)
    K = tkernel.get_kernel_matrix()
    kernel.append_kernel(CustomKernel(K))
        
    subkfeats_train = RealFeatures(fm_train_real)
    feats_train.append_feature_obj(subkfeats_train)
    subkernel = PolyKernel(10,2)
    kernel.append_kernel(subkernel)

    kernel.init(feats_train, feats_train)
    
    labels = BinaryLabels(fm_label_twoclass)
    svm = LibSVM(1.0, kernel, labels)
    svm.train()

    kernel = CombinedKernel()
    feats_pred = CombinedFeatures()

    pfeats = RealFeatures(fm_test_real)
    tkernel = PolyKernel(10,3)
    tkernel.init(tfeats, pfeats)
    K = tkernel.get_kernel_matrix()
    kernel.append_kernel(CustomKernel(K))

    subkfeats_test = RealFeatures(fm_test_real)
    feats_pred.append_feature_obj(subkfeats_test)
    subkernel = PolyKernel(10, 2)
    kernel.append_kernel(subkernel)
    kernel.init(feats_train, feats_pred)

    svm.set_kernel(kernel)
    svm.apply()
    km_train=kernel.get_kernel_matrix()
    return km_train,kernel
def mkl_binclass_modular(fm_train_real=traindat,
                         fm_test_real=testdat,
                         fm_label_twoclass=label_traindat):

    ##################################
    # set up and train

    # create some poly train/test matrix
    tfeats = RealFeatures(fm_train_real)
    tkernel = PolyKernel(10, 3)
    tkernel.init(tfeats, tfeats)
    K_train = tkernel.get_kernel_matrix()

    pfeats = RealFeatures(fm_test_real)
    tkernel.init(tfeats, pfeats)
    K_test = tkernel.get_kernel_matrix()

    # create combined train features
    feats_train = CombinedFeatures()
    feats_train.append_feature_obj(RealFeatures(fm_train_real))

    # and corresponding combined kernel
    kernel = CombinedKernel()
    kernel.append_kernel(CustomKernel(K_train))
    kernel.append_kernel(PolyKernel(10, 2))
    kernel.init(feats_train, feats_train)

    # train mkl
    labels = BinaryLabels(fm_label_twoclass)
    mkl = MKLClassification()

    # which norm to use for MKL
    mkl.set_mkl_norm(1)  #2,3

    # set cost (neg, pos)
    mkl.set_C(1, 1)

    # set kernel and labels
    mkl.set_kernel(kernel)
    mkl.set_labels(labels)

    # train
    mkl.train()
    #w=kernel.get_subkernel_weights()
    #kernel.set_subkernel_weights(w)

    ##################################
    # test

    # create combined test features
    feats_pred = CombinedFeatures()
    feats_pred.append_feature_obj(RealFeatures(fm_test_real))

    # and corresponding combined kernel
    kernel = CombinedKernel()
    kernel.append_kernel(CustomKernel(K_test))
    kernel.append_kernel(PolyKernel(10, 2))
    kernel.init(feats_train, feats_pred)

    # and classify
    mkl.set_kernel(kernel)
    mkl.apply()
    return mkl.apply(), kernel
def mkl_binclass_modular(fm_train_real=traindat, fm_test_real=testdat, fm_label_twoclass=label_traindat):

    ##################################
    # set up and train

    # create some poly train/test matrix
    tfeats = RealFeatures(fm_train_real)
    tkernel = PolyKernel(10, 3)
    tkernel.init(tfeats, tfeats)
    K_train = tkernel.get_kernel_matrix()

    pfeats = RealFeatures(fm_test_real)
    tkernel.init(tfeats, pfeats)
    K_test = tkernel.get_kernel_matrix()

    # create combined train features
    feats_train = CombinedFeatures()
    feats_train.append_feature_obj(RealFeatures(fm_train_real))

    # and corresponding combined kernel
    kernel = CombinedKernel()
    kernel.append_kernel(CustomKernel(K_train))
    kernel.append_kernel(PolyKernel(10, 2))
    kernel.init(feats_train, feats_train)

    # train mkl
    labels = BinaryLabels(fm_label_twoclass)
    mkl = MKLClassification()

    # which norm to use for MKL
    mkl.set_mkl_norm(1)  # 2,3

    # set cost (neg, pos)
    mkl.set_C(1, 1)

    # set kernel and labels
    mkl.set_kernel(kernel)
    mkl.set_labels(labels)

    # train
    mkl.train()
    # w=kernel.get_subkernel_weights()
    # kernel.set_subkernel_weights(w)

    ##################################
    # test

    # create combined test features
    feats_pred = CombinedFeatures()
    feats_pred.append_feature_obj(RealFeatures(fm_test_real))

    # and corresponding combined kernel
    kernel = CombinedKernel()
    kernel.append_kernel(CustomKernel(K_test))
    kernel.append_kernel(PolyKernel(10, 2))
    kernel.init(feats_train, feats_pred)

    # and classify
    mkl.set_kernel(kernel)
    mkl.apply()
    return mkl.apply(), kernel