Exemple #1
0
    def test_ts_store(self):
        """
        This test verifies the shyft internal time-series store,
        that allow identified time-series to be stored
        in the backend using a directory container specified for the
        location.

        All time-series of the form shyft://<container>/<ts-name>
        is mapped to the configured <container> (aka a directory on the server)

        This applies to expressions, as well as the new
        .store_ts(ts_vector) function that allows the user to
        stash away time-series into the configured back-end container.

        All find-operations of the form shyft://<container>/<regular-expression>
        is mapped to a search in the corresponding directory for the <container>

        :return:
        """
        with tempfile.TemporaryDirectory() as c_dir:
            # setup data to be calculated
            utc = Calendar()
            d = deltahours(1)
            n = 365 * 24 // 3
            t = utc.time(2016, 1, 1)
            ta = TimeAxis(t, d, n)
            n_ts = 10
            store_tsv = TsVector()  # something we store at server side
            tsv = TsVector(
            )  # something we put an expression into, refering to stored ts-symbols

            for i in range(n_ts):
                pts = TimeSeries(
                    ta,
                    np.sin(np.linspace(start=0, stop=1.0 * i, num=ta.size())),
                    point_fx.POINT_AVERAGE_VALUE)
                ts_id = shyft_store_url("{0}".format(i))
                tsv.append(float(1.0) * TimeSeries(ts_id)
                           )  # make an expression that returns what we store
                store_tsv.append(TimeSeries(
                    ts_id, pts))  # generate a bound pts to store
            # krls with some extra challenges related to serialization
            tsv_krls = TsVector()
            krls_ts = TimeSeries(shyft_store_url("9")).krls_interpolation(
                dt=d, gamma=1e-3, tolerance=0.001, size=ta.size())
            tsv_krls.append(krls_ts)
            # min_max_check_ts_fill also needs a serial check
            # create a  trivial-case
            ts9 = TimeSeries(shyft_store_url("9"))
            ts_qac = ts9.min_max_check_linear_fill(v_min=-10.0 * n_ts,
                                                   v_max=10.0 * n_ts)
            tsv_krls.append(ts_qac)
            tsv_krls.append(ts9)
            tsv_krls.append(ts9.inside(min_v=-0.5, max_v=0.5))

            # then start the server
            dtss = DtsServer()
            port_no = find_free_port()
            host_port = 'localhost:{0}'.format(port_no)
            dtss.set_auto_cache(True)
            std_max_items = dtss.cache_max_items
            dtss.cache_max_items = 3000
            tst_max_items = dtss.cache_max_items
            dtss.set_listening_port(port_no)
            dtss.set_container(
                "test", c_dir
            )  # notice we set container 'test' to point to c_dir directory
            dtss.start_async(
            )  # the internal shyft time-series will be stored to that container
            # also notice that we dont have to setup callbacks in this case (but we could, and they would work)
            #
            # finally start the action
            dts = DtsClient(host_port)
            # then try something that should work
            dts.store_ts(store_tsv)
            r1 = dts.evaluate(tsv, ta.total_period())
            f1 = dts.find(
                r"shyft://test/\d")  # find all ts with one digit, 0..9
            r2 = dts.evaluate(tsv_krls, ta.total_period())
            url_x = shyft_store_url(r'does not exists')
            tsvx = TsVector()
            tsvx.append(TimeSeries(url_x))
            try:
                rx = dts.evaluate(tsvx, ta.total_period())
                self.assertFalse(True, 'This did not work out')
            except RuntimeError as rex:
                self.assertIsNotNone(rex)

            dts.close()  # close connection (will use context manager later)
            dtss.clear()  # close server

            # now the moment of truth:
            self.assertEqual(len(r1), len(tsv))
            for i in range(n_ts - 1):
                self.assertEqual(r1[i].time_axis, store_tsv[i].time_axis)
                assert_array_almost_equal(r1[i].values.to_numpy(),
                                          store_tsv[i].values.to_numpy(),
                                          decimal=4)

            self.assertEqual(len(f1), 10)
            self.assertEqual(len(r2), len(tsv_krls))
            assert_array_almost_equal(r2[1].values.to_numpy(),
                                      r2[2].values.to_numpy(),
                                      decimal=4)
            self.assertEqual(1000000, std_max_items)
            self.assertEqual(3000, tst_max_items)
Exemple #2
0
    def test_functionality_hosting_localhost(self):

        # setup data to be calculated
        utc = Calendar()
        d = deltahours(1)
        d24 = deltahours(24)
        n = 240
        n24 = 10
        t = utc.time(2016, 1, 1)
        ta = TimeAxis(t, d, n)
        ta24 = TimeAxis(t, d24, n24)
        n_ts = 100
        percentile_list = IntVector([0, 35, 50, 65, 100])
        tsv = TsVector()
        store_tsv = TsVector()  # something we store at server side
        for i in range(n_ts):
            pts = TimeSeries(ta, np.linspace(start=0, stop=1.0, num=ta.size()),
                             point_fx.POINT_AVERAGE_VALUE)
            tsv.append(float(1 + i / 10) * pts)
            store_tsv.append(TimeSeries("cache://test/{0}".format(i),
                                        pts))  # generate a bound pts to store

        dummy_ts = TimeSeries('dummy://a')
        tsv.append(dummy_ts.integral(ta))
        self.assertGreater(len(ts_stringify(tsv[0])),
                           10)  # just ensure ts_stringify work on expr.
        # then start the server
        dtss = DtsServer()
        port_no = find_free_port()
        host_port = 'localhost:{0}'.format(port_no)
        dtss.set_listening_port(port_no)
        dtss.cb = self.dtss_read_callback
        dtss.find_cb = self.dtss_find_callback
        dtss.store_ts_cb = self.dtss_store_callback

        dtss.start_async()

        dts = DtsClient(StringVector([host_port]), True,
                        1000)  # as number of hosts
        # then try something that should work
        dts.store_ts(store_tsv)
        r1 = dts.evaluate(tsv, ta.total_period())
        tsv1x = tsv.inside(-0.5, 0.5)
        tsv1x.append(tsv1x[-1].decode(
            start_bit=1, n_bits=1))  # just to verify serialization/bind
        tsv1x.append(store_tsv[1].derivative())
        tsv1x.append(store_tsv[1].pow(
            2.0))  # just for verify pow serialization(well, it's a bin-op..)
        r1x = dts.evaluate(tsv1x, ta.total_period())
        r2 = dts.percentiles(tsv, ta.total_period(), ta24, percentile_list)
        r3 = dts.find('netcdf://dummy\.nc/ts\d')
        self.rd_throws = True
        ex_count = 0
        try:
            rx = dts.evaluate(tsv, ta.total_period())
        except RuntimeError as e:
            ex_count = 1
            pass
        self.rd_throws = True
        try:
            fx = dts.find('should throw')
        except RuntimeError as e:
            ex_count += 1
            pass

        dts.close()  # close connection (will use context manager later)
        dtss.clear()  # close server
        self.assertEqual(ex_count, 2)
        self.assertEqual(len(r1), len(tsv))
        self.assertEqual(self.callback_count, 4)
        for i in range(n_ts - 1):
            self.assertEqual(r1[i].time_axis, tsv[i].time_axis)
            assert_array_almost_equal(r1[i].values.to_numpy(),
                                      tsv[i].values.to_numpy(),
                                      decimal=4)

        self.assertEqual(len(r2), len(percentile_list))
        dummy_ts.bind(
            TimeSeries(ta,
                       fill_value=1.0,
                       point_fx=point_fx.POINT_AVERAGE_VALUE))
        p2 = tsv.percentiles(ta24, percentile_list)
        # r2 = tsv.percentiles(ta24,percentile_list)

        for i in range(len(p2)):
            self.assertEqual(r2[i].time_axis, p2[i].time_axis)
            assert_array_almost_equal(r2[i].values.to_numpy(),
                                      p2[i].values.to_numpy(),
                                      decimal=1)

        self.assertEqual(self.find_count, 2)
        self.assertEqual(len(r3), 10)  # 0..9
        for i in range(len(r3)):
            self.assertEqual(r3[i], self.ts_infos[i])
        self.assertIsNotNone(r1x)
        self.assertEqual(1, len(self.stored_tsv))
        self.assertEqual(len(store_tsv), len(self.stored_tsv[0]))
        for i in range(len(store_tsv)):
            self.assertEqual(self.stored_tsv[0][i].ts_id(),
                             store_tsv[i].ts_id())