Exemple #1
0
    def __init__(self, basename, use_locks=False):
        """
        All data will be stored under directory `basename`. If there is a server
        there already, it will be loaded (resumed).

        The server object is stateless in RAM -- its state is defined entirely by its location.
        There is therefore no need to store the server object.
        """
        if not os.path.isdir(basename):
            raise ValueError("%r must be a writable directory" % basename)
        self.basename = basename
        self.use_locks = use_locks
        self.lock_update = threading.RLock() if use_locks else gensim.utils.nocm
        try:
            self.fresh_index = SimIndex.load(self.location('index_fresh'))
        except:
            logger.debug("starting a new fresh index")
            self.fresh_index = None
        try:
            self.opt_index = SimIndex.load(self.location('index_opt'))
        except:
            logger.debug("starting a new optimized index")
            self.opt_index = None
        try:
            self.model = SimModel.load(self.location('model'))
        except:
            self.model = None
        self.payload = SqliteDict(self.location('payload'), autocommit=True, journal_mode=JOURNAL_MODE)
        self.flush(save_index=False, save_model=False, clear_buffer=True)
        logger.info("loaded %s" % self)
Exemple #2
0
def simulate(env, iteration, N=150):
    """Test the performane of evolved behavior."""
    # phenotype = agent.individual[0].phenotype
    # phenotypes = extract_phenotype(agents)
    phenotypes = env[0]
    threshold = 1.0

    sim = SimModel(N,
                   100,
                   100,
                   10,
                   iter=iteration,
                   xmlstrings=phenotypes,
                   pname=env[1])
    sim.build_environment_from_json()

    # for all agents store the information about hub
    for agent in sim.agents:
        agent.shared_content['Hub'] = {sim.hub}
        # agent.shared_content['Sites'] = {sim.site}

    simresults = SimulationResults(sim.pname, sim.connect, sim.sn, sim.stepcnt,
                                   sim.food_in_hub(), phenotypes[0])

    simresults.save_phenotype()
    simresults.save_to_file()

    # Iterate and execute each step in the environment
    for i in range(iteration):
        # For every iteration we need to store the results
        # Save them into db or a file
        sim.step()
        value = sim.food_in_hub()
        foraging_percent = (value * 100.0) / (sim.num_agents * 1.0)

        simresults = SimulationResults(sim.pname, sim.connect, sim.sn,
                                       sim.stepcnt, foraging_percent,
                                       phenotypes[0])

        simresults.save_to_file()

    # print ('food at site', len(sim.food_in_loc(sim.site.location)))
    # print ('food at hub', len(sim.food_in_loc(sim.hub.location)))
    # print("Total food in the hub", len(food_objects))

    # food_objects = sim.food_in_loc(sim.hub.location)

    # for food in food_objects:
    #    print('simulate phenotye:', dir(food))

    sucess = False
    print('Foraging percent', value)

    if foraging_percent >= threshold:
        print('Foraging success')
        sucess = True

    sim.experiment.update_experiment_simulation(value, sucess)

    # Plot the fitness in the graph
    graph = GraphACC(sim.pname, 'simulation.csv')
    graph.gen_plot()
Exemple #3
0
from simmodel import SimModel

sim = SimModel()
sim.main()
Exemple #4
0
from simmodel import SimModel
import matplotlib.pyplot as plt

elements = 2

timesList = []
elList = []

while elements <= 50:
    sim = SimModel()
    time = sim.main(elements)
    elList.append(elements)
    elements += 1
    timesList.append(time)

print(timesList)
print(elList)

timesArr = [i['time'] for i in timesList]

plt.plot(timesArr)
plt.ylabel('Execution time')
plt.show()