return_01c=False,
                                 return_list=False,
                                 use_threads=use_threads,
                                 preload=True,
                                 n_layers=n_layers)

n_batches_train = train_iter.nbatches
n_batches_val = val_iter.nbatches
n_classes = 2
void_labels = train_iter.void_labels

# Define model
simple_net_output, net = build_simple_model(input_var,
                                            filter_size=filter_size,
                                            n_filters=n_filters,
                                            depth=depth,
                                            block=block,
                                            nb_in_channels=nb_in_channels,
                                            n_classes=n_classes)

# load weights to balance training error
Class = np.loadtxt(
    '/Tmp/cucurulg/datasets/cortical_layers/6layers_segmentation/training_cls.txt'
)


def compute_class_weights(Class):
    #get unique labels and number of pixels of each class
    unique, counts = np.unique(Class, return_counts=True)
    #calculate freq(c) number of pixels per class divided by the total number of pixels in images where c is present
    freq = counts.astype(float) / Class.size
Exemple #2
0
    shuffle_at_each_epoch = True,
    return_one_hot=False,
    return_01c=False,
    return_list=False,
    use_threads=use_threads,
    preload=True,
    n_layers=args['n_layers'])

n_batches_val = val_iter.nbatches
n_classes = val_iter.non_void_nclasses
void_labels = val_iter.void_labels

simple_net_output, net = build_simple_model(input_var,
                    filter_size = args['filter_size'],
                    n_filters = args['n_filters'],
                    depth = args['depth'],
                    block= args['block'],
                    nb_in_channels = nb_in_channels,
                    n_classes = n_classes)

Class=np.loadtxt('/Tmp/cucurulg/datasets/cortical_layers/6layers_segmentation/training_cls.txt')
def compute_class_weights(Class):
    #get unique labels and number of pixels of each class
    unique, counts = np.unique(Class,return_counts=True)
    #calculate freq(c) number of pixels per class divided by the total number of pixels in images where c is present
    freq=counts.astype(float)/Class.size
    return np.median(freq)/freq

weights=compute_class_weights(Class)

print "Defining and compiling valid functions"