def test_learning(self): pol_net = PolNet(self.env.observation_space, self.env.action_space, h1=32, h2=32) pol = GaussianPol(self.env.observation_space, self.env.action_space, pol_net) vf_net = VNet(self.env.observation_space) vf = DeterministicSVfunc(self.env.observation_space, vf_net) discrim_net = DiscrimNet(self.env.observation_space, self.env.action_space, h1=32, h2=32) discrim = DeterministicSAVfunc(self.env.observation_space, self.env.action_space, discrim_net) sampler = EpiSampler(self.env, pol, num_parallel=1) optim_vf = torch.optim.Adam(vf_net.parameters(), 3e-4) optim_discrim = torch.optim.Adam(discrim_net.parameters(), 3e-4) with open(os.path.join('data/expert_epis', 'Pendulum-v0_2epis.pkl'), 'rb') as f: expert_epis = pickle.load(f) expert_traj = Traj() expert_traj.add_epis(expert_epis) expert_traj.register_epis() epis = sampler.sample(pol, max_steps=32) agent_traj = Traj() agent_traj.add_epis(epis) agent_traj = ef.compute_pseudo_rews(agent_traj, discrim) agent_traj = ef.compute_vs(agent_traj, vf) agent_traj = ef.compute_rets(agent_traj, 0.99) agent_traj = ef.compute_advs(agent_traj, 0.99, 0.95) agent_traj = ef.centerize_advs(agent_traj) agent_traj = ef.compute_h_masks(agent_traj) agent_traj.register_epis() result_dict = gail.train(agent_traj, expert_traj, pol, vf, discrim, optim_vf, optim_discrim, rl_type='trpo', epoch=1, batch_size=32, discrim_batch_size=32, discrim_step=1, pol_ent_beta=1e-3, discrim_ent_beta=1e-5) del sampler
parallel_dim=1 if args.rnn else 0) else: raise ValueError('Only Box, Discrete, and MultiDiscrete are supported') if args.rnn: vf_net = VNetLSTM(ob_space, h_size=256, cell_size=256) else: vf_net = VNet(ob_space) vf = DeterministicSVfunc(ob_space, vf_net, args.rnn, data_parallel=args.data_parallel, parallel_dim=1 if args.rnn else 0) discrim_net = DiscrimNet(ob_space, ac_space, h1=args.discrim_h1, h2=args.discrim_h2) discrim = DeterministicSAVfunc(ob_space, ac_space, discrim_net, data_parallel=args.data_parallel) sampler = EpiSampler(env, pol, num_parallel=args.num_parallel, seed=args.seed) optim_pol = torch.optim.Adam(pol_net.parameters(), args.pol_lr) optim_vf = torch.optim.Adam(vf_net.parameters(), args.vf_lr) optim_discrim = torch.optim.Adam(discrim_net.parameters(), args.discrim_lr) with open(os.path.join(args.expert_dir, args.expert_fname), 'rb') as f: expert_epis = pickle.load(f) expert_traj = Traj()
vf = DeterministicSVfunc(observation_space, vf_net) if args.rew_type == 'rew': rewf_net = VNet(observation_space, h1=args.discrim_h1, h2=args.discrim_h2) rewf = DeterministicSVfunc(observation_space, rewf_net) shaping_vf_net = VNet(observation_space, h1=args.discrim_h1, h2=args.discrim_h2) shaping_vf = DeterministicSVfunc(observation_space, shaping_vf_net) optim_discrim = torch.optim.Adam( list(rewf_net.parameters()) + list(shaping_vf_net.parameters()), args.discrim_lr) advf = None elif args.rew_type == 'adv': advf_net = DiscrimNet(observation_space, action_space, h1=args.discrim_h1, h2=args.discrim_h2) advf = DeterministicSAVfunc(observation_space, action_space, advf_net) optim_discrim = torch.optim.Adam(advf_net.parameters(), args.discrim_lr) rewf = None shaping_vf = None else: raise ValueError('Only rew and adv are supported') sampler = EpiSampler(env, pol, num_parallel=args.num_parallel, seed=args.seed) optim_pol = torch.optim.Adam(pol_net.parameters(), args.pol_lr) optim_vf = torch.optim.Adam(vf_net.parameters(), args.vf_lr) with open(os.path.join(args.expert_dir, args.expert_fname), 'rb') as f: expert_epis = pickle.load(f)