Exemple #1
0
    def test_supply_attribute(self):
        """
        Test that we can supply an attribute instead of a function.
        """
        iden = Identity()
        lst = LeastSquaresTerm(Target(iden, 'x'), 3, weight=0.1)
        self.assertEqual(lst.goal, 3)
        self.assertAlmostEqual(lst.weight, 0.1, places=13)

        iden.set_dofs([17])
        self.assertEqual(lst.f_in(), 17)
        correct_value = 0.1 * ((17 - 3) ** 2)
        self.assertAlmostEqual(lst.f_out(), correct_value, places=13)
Exemple #2
0
    def test_supply_property(self):
        """
        Test that we can supply a property instead of a function.
        """
        iden = Identity()
        lst = LeastSquaresTerm.from_sigma(Target(iden, 'f'), 3, sigma=0.1)
        self.assertEqual(lst.goal, 3)
        self.assertAlmostEqual(lst.weight, 100, places=13)

        iden.set_dofs([17])
        self.assertEqual(lst.f_in(), 17)
        correct_value = ((17 - 3) / 0.1) ** 2
        self.assertAlmostEqual(lst.f_out(), correct_value, places=11)
Exemple #3
0
    def test_supply_object(self):
        """
        Test that we can supply an object with a J function instead of a function.
        """
        iden = Identity()
        # Note here we supply iden instead of iden.J
        lst = LeastSquaresTerm.from_sigma(iden, 3, sigma=0.1)
        self.assertEqual(lst.f_in, iden.J)
        self.assertEqual(lst.goal, 3)
        self.assertAlmostEqual(lst.weight, 100, places=13)

        iden.set_dofs([17])
        self.assertEqual(lst.f_in(), 17)
        correct_value = ((17 - 3) / 0.1) ** 2
        self.assertAlmostEqual(lst.f_out(), correct_value, places=11)
Exemple #4
0
    def test_supply_tuples(self):
        """
        Test basic usage
        """
        # Objective function f(x) = ((x - 3) / 2) ** 2
        iden1 = Identity()
        term1 = (iden1.J, 3, 0.25)
        prob = LeastSquaresProblem([term1])
        self.assertAlmostEqual(prob.objective(), 2.25)
        self.assertAlmostEqual(prob.objective(), sum(t.f_out() for t in prob.terms))
        self.assertEqual(len(prob.dofs.f()), 1)
        self.assertAlmostEqual(prob.dofs.f()[0], 0)
        self.assertEqual(len(prob.f()), 1)
        self.assertAlmostEqual(prob.f()[0], -1.5)
        self.assertAlmostEqual(prob.objective_from_shifted_f(prob.f()), 2.25)
        self.assertAlmostEqual(prob.objective_from_unshifted_f(prob.dofs.f()), 2.25)
        iden1.set_dofs([10])
        self.assertAlmostEqual(prob.objective(), 12.25)
        self.assertAlmostEqual(prob.objective(), sum(t.f_out() for t in prob.terms))
        self.assertAlmostEqual(prob.objective_from_shifted_f(prob.f()), 12.25)
        self.assertAlmostEqual(prob.objective_from_unshifted_f(prob.dofs.f()), 12.25)
        self.assertAlmostEqual(prob.objective([0]), 2.25)
        self.assertAlmostEqual(prob.objective([10]), 12.25)
        self.assertEqual(prob.dofs.all_owners, [iden1])
        self.assertEqual(prob.dofs.dof_owners, [iden1])

        # Objective function
        # f(x,y) = ((x - 3) / 2) ** 2 + ((y + 4) / 5) ** 2
        iden2 = Identity()
        term2 = (iden2.J, -4, 0.04)
        prob = LeastSquaresProblem([term1, term2])
        self.assertAlmostEqual(prob.objective(), 12.89)
        self.assertAlmostEqual(prob.objective(), sum(t.f_out() for t in prob.terms))
        self.assertEqual(len(prob.f()), 2)
        self.assertAlmostEqual(prob.objective_from_shifted_f(prob.f()), 12.89)
        self.assertAlmostEqual(prob.objective_from_unshifted_f(prob.dofs.f()), 12.89)
        iden1.set_dofs([5])
        iden2.set_dofs([-7])
        self.assertAlmostEqual(prob.objective(), 1.36)
        self.assertAlmostEqual(prob.objective(), sum(t.f_out() for t in prob.terms))
        self.assertEqual(len(prob.f()), 2)
        self.assertAlmostEqual(prob.objective_from_shifted_f(prob.f()), 1.36)
        self.assertAlmostEqual(prob.objective_from_unshifted_f(prob.dofs.f()), 1.36)
        self.assertAlmostEqual(prob.objective([10, 0]), 12.89)
        self.assertAlmostEqual(prob.objective([5, -7]), 1.36)
        self.assertEqual(prob.dofs.dof_owners, [iden1, iden2])
        self.assertEqual(prob.dofs.all_owners, [iden1, iden2])
Exemple #5
0
    def test_no_dependents(self):
        """
        For an object that does not depend on anything, just return the
        original object.
        """
        obj = object()
        self.assertEqual(get_owners(obj), [obj])

        iden = Identity()
        self.assertEqual(get_owners(iden), [iden])
Exemple #6
0
 def test_circular2(self):
     """
     Verify that a circular dependency among 2 objects is detected.
     """
     o1 = Identity()
     o2 = Identity()
     o1.depends_on = ["o2"]
     o2.depends_on = ["o1"]
     o1.o2 = o2
     o2.o1 = o1
     with self.assertRaises(RuntimeError):
         get_owners(o1)
Exemple #7
0
    def test_basic(self):
        """
        Test basic usage
        """
        iden = Identity()
        lst = LeastSquaresTerm(iden.J, 3, weight=0.1)
        self.assertEqual(lst.f_in, iden.J)
        self.assertEqual(lst.goal, 3)
        self.assertAlmostEqual(lst.weight, 0.1, places=13)

        lst = LeastSquaresTerm.from_sigma(iden.J, 3, sigma=0.1)
        self.assertEqual(lst.f_in, iden.J)
        self.assertEqual(lst.goal, 3)
        self.assertAlmostEqual(lst.weight, 100.0, places=13)

        iden.set_dofs([17])
        self.assertEqual(lst.f_in(), 17)
        correct_value = ((17 - 3) / 0.1) ** 2
        self.assertAlmostEqual(lst.f_out(), correct_value, places=11)
Exemple #8
0
 def test_depth_2(self):
     """
     Check cases in which the original object depends on another, which
     depends on another.
     """
     o1 = Identity()
     o2 = Identity()
     o3 = object()
     o1.depends_on = ["o2"]
     o2.depends_on = ["o3"]
     o1.o2 = o2
     o2.o3 = o3
     self.assertEqual(get_owners(o1), [o1, o2, o3])
 def test_solve_quadratic(self):
     """
     Minimize f(x,y,z) = 1 * (x - 1) ^ 2 + 2 * (y - 2) ^ 2 + 3 * (z - 3) ^ 2.
     The optimum is at (x,y,z)=(1,2,3), and f=0 at this point.
     """
     for solver in solvers:
         iden1 = Identity()
         iden2 = Identity()
         iden3 = Identity()
         term1 = (iden1.J, 1, 1)
         term2 = (iden2.J, 2, 2)
         term3 = (iden3.J, 3, 3)
         prob = LeastSquaresProblem([term1, term2, term3])
         if solver == serial_solve:
             solver(prob, tol=1e-12)
         else:
             solver(prob)
         self.assertAlmostEqual(prob.objective(), 0)
         self.assertAlmostEqual(iden1.x, 1)
         self.assertAlmostEqual(iden2.x, 2)
         self.assertAlmostEqual(iden3.x, 3)
Exemple #10
0
    def test_depth_1(self):
        """
        Check cases in which the original object depends on 1 or more others.
        """
        o1 = Identity()
        o2 = Identity()
        o1.o2 = o2
        o1.depends_on = ["o2"]
        self.assertEqual(get_owners(o1), [o1, o2])

        o3 = object()
        o1.depends_on = ["o3", "o2"]
        o1.o3 = o3
        self.assertEqual(get_owners(o1), [o1, o3, o2])
 def test_gradient(self):
     iden = Identity()
     for n in range(1, 10):
         iden.set_dofs([np.random.rand() * 4 - 2])
         # Supply an object to finite_difference():
         fd_grad = Dofs([iden]).fd_jac().flatten()
         np.testing.assert_allclose(fd_grad, iden.df)
         np.testing.assert_allclose(fd_grad, iden.dJ())
         # Supply a function to finite_difference():
         fd_grad = Dofs([iden.J]).fd_jac().flatten()
         np.testing.assert_allclose(fd_grad, iden.df)
         np.testing.assert_allclose(fd_grad, iden.dJ())
         # Supply an attribute to finite_difference():
         fd_grad = Dofs([Target(iden, "f")]).fd_jac().flatten()
         np.testing.assert_allclose(fd_grad, iden.df)
         np.testing.assert_allclose(fd_grad, iden.dJ())
Exemple #12
0
    def test_exceptions(self):
        """
        Test that exceptions are thrown when invalid inputs are
        provided.
        """
        # First argument must be callable
        with self.assertRaises(TypeError):
            lst = LeastSquaresTerm(2, 3, 0.1)

        # Second and third arguments must be real numbers
        iden = Identity()
        #with self.assertRaises(TypeError):
        #    lst = LeastSquaresTerm(iden.J, "hello", sigma=0.1)
        with self.assertRaises(TypeError):
            lst = LeastSquaresTerm.from_sigma(iden.J, 3, sigma=iden)
        #with self.assertRaises(TypeError):
        #    lst = LeastSquaresTerm(iden.J, "hello", weight=0.1)
        with self.assertRaises(TypeError):
            lst = LeastSquaresTerm(iden.J, 3, weight=iden)

        # sigma cannot be zero
        with self.assertRaises(ValueError):
            lst = LeastSquaresTerm.from_sigma(iden.J, 3, sigma=0)
        with self.assertRaises(ValueError):
            lst = LeastSquaresTerm.from_sigma(iden.J, 3, sigma=0.0)

        # Cannot specify both weight and sigma
        with self.assertRaises(TypeError):
            lst = LeastSquaresTerm(iden.J, 3, sigma=1.2, weight=3.4)
        # Must specify either weight or sigma
        with self.assertRaises(TypeError):
            lst = LeastSquaresTerm(iden.J, 3)

        # Weight cannot be negative
        with self.assertRaises(ValueError):
            lst = LeastSquaresTerm(iden.J, 3, weight=-1.0)
 def test_solve_quadratic_fixed_supplying_attributes(self):
     """
     Same as test_solve_quadratic_fixed, except supplying attributes
     rather than functions as targets.
     """
     for solver in solvers:
         iden1 = Identity()
         iden2 = Identity()
         iden3 = Identity()
         iden1.x = 4
         iden2.x = 5
         iden3.x = 6
         iden1.names = ['x1']
         iden2.names = ['x2']
         iden3.names = ['x3']
         iden1.fixed = [True]
         iden3.fixed = [True]
         # Try a mix of explicit LeastSquaresTerms and tuples
         term1 = LeastSquaresTerm(Target(iden1, 'x'), 1, 1)
         term2 = (iden2, 'x', 2, 1 / 4.)
         term3 = (iden3, 'x', 3, 1 / 9.)
         prob = LeastSquaresProblem([term1, term2, term3])
         solver(prob)
         self.assertAlmostEqual(prob.objective(), 10)
         self.assertAlmostEqual(iden1.x, 4)
         self.assertAlmostEqual(iden2.x, 2)
         self.assertAlmostEqual(iden3.x, 6)
    def test_basic(self):
        iden = Identity()
        self.assertAlmostEqual(iden.J(), 0, places=13)
        np.testing.assert_allclose(iden.get_dofs(), np.array([0.0]))
        np.testing.assert_allclose(iden.fixed, np.array([False]))

        x = 3.5
        iden = Identity(x)
        self.assertAlmostEqual(iden.J(), x, places=13)
        np.testing.assert_allclose(iden.get_dofs(), np.array([x]))
        np.testing.assert_allclose(iden.fixed, np.array([False]))

        y = -2
        iden.set_dofs([y])
        self.assertAlmostEqual(iden.J(), y, places=13)
        np.testing.assert_allclose(iden.get_dofs(), np.array([y]))
        np.testing.assert_allclose(iden.fixed, np.array([False]))
 def test_solve_quadratic_fixed_supplying_objects(self):
     """
     Same as test_solve_quadratic_fixed, except supplying objects
     rather than functions as targets.
     """
     for solver in solvers:
         iden1 = Identity()
         iden2 = Identity()
         iden3 = Identity()
         iden1.x = 4
         iden2.x = 5
         iden3.x = 6
         iden1.names = ['x1']
         iden2.names = ['x2']
         iden3.names = ['x3']
         iden1.fixed = [True]
         iden3.fixed = [True]
         term1 = [iden1, 1, 1]
         term2 = [iden2, 2, 1 / 4.]
         term3 = [iden3, 3, 1 / 9.]
         prob = LeastSquaresProblem([term1, term2, term3])
         solver(prob)
         self.assertAlmostEqual(prob.objective(), 10)
         self.assertAlmostEqual(iden1.x, 4)
         self.assertAlmostEqual(iden2.x, 2)
         self.assertAlmostEqual(iden3.x, 6)
 def test_solve_quadratic_fixed_supplying_properties(self):
     """
     Same as test_solve_quadratic_fixed, except supplying @properties
     rather than functions as targets.
     """
     for solver in solvers:
         iden1 = Identity()
         iden2 = Identity()
         iden3 = Identity()
         iden1.x = 4
         iden2.x = 5
         iden3.x = 6
         iden1.names = ['x1']
         iden2.names = ['x2']
         iden3.names = ['x3']
         iden1.fixed = [True]
         iden3.fixed = [True]
         # Try a mix of explicit LeastSquaresTerms and lists
         term1 = [iden1, 'f', 1, 1]
         term2 = [iden2, 'f', 2, 1 / 4.]
         term3 = LeastSquaresTerm.from_sigma(Target(iden3, 'f'), 3, sigma=3)
         prob = LeastSquaresProblem([term1, term2, term3])
         solver(prob)
         self.assertAlmostEqual(prob.objective(), 10)
         self.assertAlmostEqual(iden1.x, 4)
         self.assertAlmostEqual(iden2.x, 2)
         self.assertAlmostEqual(iden3.x, 6)
 def test_solve_quadratic_fixed(self):
     """
     Same as test_solve_quadratic, except with different weights and x
     and z are fixed, so only y is optimized.
     """
     for solver in solvers:
         iden1 = Identity()
         iden2 = Identity()
         iden3 = Identity()
         iden1.x = 4
         iden2.x = 5
         iden3.x = 6
         iden1.names = ['x1']
         iden2.names = ['x2']
         iden3.names = ['x3']
         iden1.fixed = [True]
         iden3.fixed = [True]
         term1 = (iden1.J, 1, 1)
         term2 = (iden2.J, 2, 1 / 4.)
         term3 = (iden3.J, 3, 1 / 9.)
         prob = LeastSquaresProblem([term1, term2, term3])
         solver(prob)
         self.assertAlmostEqual(prob.objective(), 10)
         self.assertAlmostEqual(iden1.x, 4)
         self.assertAlmostEqual(iden2.x, 2)
         self.assertAlmostEqual(iden3.x, 6)
Exemple #18
0
 def test_circular4(self):
     """
     Verify that a circular dependency among 4 objects is detected.
     """
     o1 = Identity()
     o2 = Identity()
     o3 = Identity()
     o4 = Identity()
     o1.depends_on = ["o2"]
     o2.depends_on = ["o3"]
     o3.depends_on = ["o4"]
     o4.depends_on = ["o1"]
     o1.o2 = o2
     o2.o3 = o3
     o3.o4 = o4
     o4.o1 = o1
     with self.assertRaises(RuntimeError):
         get_owners(o1)
from simsopt.objectives.functions import Identity
from simsopt.objectives.least_squares import LeastSquaresProblem
from simsopt.solve.serial import least_squares_serial_solve
"""                                                                           
Minimize f(x,y,z) = ((x-1)/1)^2 + ((y-2)/2)^2 + ((z-3)/3)^2.                  
The optimum is at (x,y,z)=(1,2,3), and f=0 at this point.                     
"""

# To print out diagnostic information along the way, uncomment this
# next line:
#logging.basicConfig(level=logging.INFO)

# Define some Target objects that depend on Parameter objects. In the
# future these functions would involve codes like VMEC, but for now we
# just use the functions f(x) = x.
iden1 = Identity()
iden2 = Identity()
iden3 = Identity()

# Parameters are all not fixed by default, meaning they will not be
# optimized.  You can choose to exclude any subset of the parameters
# from the space of independent variables by setting their 'fixed'
# property to True.
#iden1.fixed[0] = True
#iden2.fixed[0] = True
#iden3.fixed[0] = True

# Each Target is then equipped with a shift and weight, to become a
# term in a least-squares objective function
term1 = (iden1, 1, 1)
term2 = (iden2, 2, 2)