Exemple #1
0
def run_heuristic(num_employees_license, num_employees_credit,
                  num_employees_other, confidence, morning, total_daily):

    SERVICE_TIME = 12  # Minutes it takes to answer a message
    SIM_TIME = 360
    if morning:
        SIM_TIME = 180  # Simulation time in minutes

    RANDOM_SEED = random.randint(30, 90)
    random.seed(RANDOM_SEED)

    license_waiting_time_avg = []
    credit_waiting_time_avg = []
    other_waiting_time_avg = []
    for iteration in range(10):
        results_dict = sim(num_employees_license, num_employees_credit,
                           num_employees_other, SERVICE_TIME, SIM_TIME,
                           morning, total_daily)
        license_waiting_time_avg.append(results_dict['license'])
        credit_waiting_time_avg.append(results_dict['credit'])
        other_waiting_time_avg.append(results_dict['other'])

    license_confidence_interval = mean_confidence_interval(
        license_waiting_time_avg, confidence)
    credit_confidence_interval = mean_confidence_interval(
        credit_waiting_time_avg, confidence)
    other_confidence_interval = mean_confidence_interval(
        other_waiting_time_avg, confidence)
    return_dict = {
        'license': license_confidence_interval,
        'credit': credit_confidence_interval,
        'other': other_confidence_interval,
    }
    return return_dict
Exemple #2
0
def parse2Hoc(filename):

    # create simulation object.
    snnapSim = sim(filename)

    nrnModel = NRNModel(snnapSim)
    return snnapSim
Exemple #3
0
    def select_folder_percerr(self):

        results = sim.sim(self, self.numpoints, self.radius, self.prec,
                          self.iter, self.binsize, self.percerror)
        precision, one, two, three, four, five, six, seven, eight, nine, ten = results
        self.message.set(
            str(precision) + ' nm route localization precision\n' + str(ten) +
            '% confidence +/- precsion')
Exemple #4
0
def parse2Hoc(filename, cond):
    # create simulation object.
    snnapSim = sim(filename)

    # write model in NEURON
    if cond == 'p':
        nrnModel = NRNModelPoint(snnapSim)
    elif cond == 'd':
        nrnModel = NRNModelDist(snnapSim)
    return snnapSim
Exemple #5
0
	def select_folder_percerr(self):
		
		results = sim.sim(self, self.numpoints, self.radius, self.prec, self.iter, self.binsize, self.percerror)
		precision, one, two, three, four, five, six, seven, eight, nine, ten  = results        
		self.message.set(str(ten) + ' reproducibility %')
	def select_folder_percerr(self):
		results = sim.sim(self, self.numpoints, self.radius, self.prec, self.iter, self.binsize, self.percerror, self.a, self.rotation)
		precision = results        
		self.message.set('deviation (nm): '+str(precision))
Exemple #7
0
def run(args, logger, plotter):
  # Read config file for simulation parameters.
  #
  cfg = readConfigFile(logger, args.i)
  xtra_header_keys = {} # dict of extra keys and values for FITS header
  st = time.time()
  
  logger.debug(" Beginning simulation")
  
  # Build Zemax spectrograph model
  #
  zspec = zSpectrograph(cfg['SIM_COLLIMATOR_ZMX_FILE'], 
    cfg['SIM_CAMERA_ZMX_FILE'])

  # Build the instrument using the instrument_builder package.
  #
  # Although we construct the components from the configuration files, we 
  # override some attributes to both ensure consistency and accept some 
  # limitations of the current version.
  #
  # -> Assign camera/collimator EFFL to directly match the Zemax models.
  # -> Set the preoptics WFNO such that a spatial resolution element spans 
  #    [IFU_SLICES_PER_RESEL] slices.
  # -> Set the preoptics anamorphic magnification to 1
  # 
  instrument = SWIFT_like(cfg['PREOPTICS_CFG_NAME'], 
    cfg['IFU_CFG_NAME'], 
    cfg['SPECTROGRAPH_CFG_NAME'], 
    cfg['DETECTOR_CFG_NAME'], 
    config_dir=cfg['SIM_INSTRUMENT_CONFIGS_DIR_PATH'],
    logger=logger)

  zspec_attr = zspec.getSystemAttr(cfg['PUPIL_REFERENCE_WAVELENGTH'])

  instrument.spectrograph.cfg['camera_EFFL'] = zspec_attr['camera_EFFL']
  instrument.spectrograph.cfg['collimator_EFFL'] = zspec_attr['collimator_EFFL']

  instrument.preoptics.cfg['magnification_across_slices'] = \
    instrument.preoptics.cfg['magnification_along_slices']

  # following assumes diffraction-limited reimaging performance
  instrument.preoptics.cfg['WFNO'] = cfg['IFU_SLICES_PER_RESEL'] * \
    instrument.ifu.cfg['slice_width_physical'] / \
    cfg['PUPIL_REFERENCE_WAVELENGTH']

  instrument.assemble()

  # Get wavelength range as decimal.
  #
  waves = np.arange(cfg['SIM_WAVELENGTH_START'],
    Decimal(cfg['SIM_WAVELENGTH_END'] + \
    cfg['SIM_WAVELENGTH_INTERVAL']),
    Decimal(cfg['SIM_WAVELENGTH_INTERVAL']), dtype=Decimal)

  # Determine the smallest pupil size (D_pupil) that corresponds to Nyquist 
  # sampling at the detector given a camera focal length, f_cam, and some 
  # reference wavelength, lambda. 
  #
  # As we want to be AT LEAST Nyquist sampling at all wavelengths, we really
  # want to ensure that the system is Nyquist sampling at the shortest 
  # wavelength. Doing so means that longer wavelengths will be oversampled. 
  # The wavelength at which the pupil is constructed for can be adjusted in 
  # the configuration file as [pupil.reference_wavelength].
  # 
  # We get [D_pupil], the pupil size for a single slice, by equating the spatial
  # size of 2 detector pixels (D_p) with the spatial size of one resolution 
  # element, i.e.
  # 
  #                  2 x D_p = lambda*f_cam / D_pupil
  # 
  pupil_physical_diameter = (cfg['PUPIL_REFERENCE_WAVELENGTH'] * \
    instrument.camera_EFFL)/(2*instrument.detector_pixel_pitch)
  pupil_physical_radius = (pupil_physical_diameter/2)
  
  xtra_header_keys['EPD'] = (pupil_physical_diameter*1e3,
    "physical entrance pupil diameter (mm)")
  
  # Now find parameters with which we will rescale the image.
  #
  # As the angular size (and thus spatial size) of the resolution element is 
  # dependent on lambda, we need to define a reference system through which we 
  # can resample each wavelength. The wavelength this is done for is defined 
  # in the configuration file as [pupil.resample_to_wavelength]. 
  #
  # To do this, we first stablish the spatial pixel scale (m/px) for the 
  # reference wavelength. The latter is then used to determine the scale factor 
  # which needs to be applied to the wavelength currently being considered. To
  # avoid extrapolation, this reference wavelength should be blueward of the 
  # smallest wavelength to be considered.
  #  
  # All the information required to rescale is held in the [resampling_im] 
  # instance.
  #
  logger.debug(" Ascertaining parameters to resample to " + \
    str(cfg['PUPIL_RESAMPLE_TO_WAVELENGTH']*Decimal('1e9')) + "nm")
  
  resampling_pupil = pupil_circular(logger, cfg['PUPIL_SAMPLING'],
    cfg['PUPIL_GAMMA'], pupil_physical_radius, verbose=True) 

  preoptics_reimager = reimager(instrument.preoptics_WFNO)

  resampling_im = resampling_pupil.toConjugateImage(
    cfg['PUPIL_RESAMPLE_TO_WAVELENGTH'], 
    preoptics_reimager, verbose=True)
  
  # Initialise datacube and run simulations for each wavelength.
  # 
  # The result from a simulation is an image instance which we can append 
  # to the datacube.
  #
  dcube = cube(logger)
  s = sim(logger, plotter, resampling_im, resampling_pupil, len(waves), 
          preoptics_reimager, zspec, cfg, instrument)  
  
  for idx, w in enumerate(waves):
    logger.info(" !!! Processing for a wavelength of " + str(float(w)*1e9) + 
                "nm...") 
    
    this_st = time.time()
    dcube.append(s.run(w, verbose=args.v))
    this_duration = time.time()-this_st
    
    if idx>0:
      logger.debug(" Last wavelength iteration took " + str(int(this_duration)) 
                   + "s, expected time to completion is " + 
                   str(int(((len(waves)-(idx+1))*this_duration))) + "s.")
    
  # Make and view output.
  #
  # Note that pyds9 interaction only works with systems with the XPA protocol 
  # installed, and i've yet to find a way to get this working on a Windows box.
  # 
  dcube.write(args, cfg, xtra_header_keys)
  if args.d:
    import pyds9
    d = pyds9.DS9()
    d.set("file " + args.f)
    d.set('cmap heat')
    d.set('scale log')
    d.set('zoom 4')
  
  duration = time.time()-st
  logger.debug(" This simulation completed in " + str(sf(duration, 4)) + "s.")
Exemple #8
0
def main():
    sim()
Exemple #9
0
print("SIMPLE EPIDEMIC TRANSMISION MODEL")
print("Human to human disease simulation")
print("---------------------------------")
print("---https://github/rvalla/SETM----")
print("#################################")

#Running desired number of simulations...
for i in range(simulationsCount):
    print("", end="\n")
    print("Starting simulation number " + str(i + 1), end="\n")
    simulationName = simulationsName
    simulationName = simulationsName + "_" + str(i)
    if i == 0:
        dt.saveConfigStart(simulationsPopulation, simulationsPeriod, simulationName, areaBDensity, runGovActions, \
         govActions, govFailureList, autoIsolationThreshold, startingImmunity, behavior, behaviorTrigger, \
         behaviorOff, behaviorFactor)
    s = sim(simulationsPopulation, simulationsPeriod, i + 1, casesCeroCount, simulationName, areaBDensity, \
     runGovActions, govActions, govFailureList, autoIsolationThreshold, startingImmunity, behavior, \
     behaviorTrigger, behaviorOff, behaviorFactor)
    vz.getFileNames(simulationName)
    vz.populationVisualization(simulationName)
    govActionsCycles = sim.getGovActionsCycles()
    behaviorCycles = sim.getBehaviorCycles()
    print("Building data visualization...", end="\r")
    vz.simulationVisualization(simulationName, runGovActions, govActionsCycles,
                               behavior, behaviorCycles, simulationsPopulation)
    vz.infectionsVisualization(simulationName, simulationsPeriod,
                               runGovActions, govActionsCycles, behavior,
                               behaviorCycles)
    print("Data visualization complete!     ", end="\n")
    print("", end="\n")
Exemple #10
0
def run_analysis(data_failure, data_downtime, rep=100):

    global res_failure_model
    global res_downtime_model
    global gamma
    global alpha
    global beta
    global availability
    global predictions
    global kaplan_meier_obj
    global renewal_prop
    global num_failures
    global gammaLower, gammaUpper, alphaLower, alphaUpper, betaLower, betaUpper
    global conf_int_A

    T = list()
    for i in range(len(data_failure)):
        if i == 0:
            T.append(data_failure[0])
        else:
            T.append(data_failure[i] + T[-1])

    res_failure_model = modsel.akaike_information_criterion(
        mle.failure_models(T))
    # res_failure_model = mle.failure_models(T)[1]
    res_downtime_model = downtime.downtime_accepted_models(data_downtime)[1]
    gamma, alpha, beta = kpicalc.model_parameters(res_failure_model,
                                                  disp=False)[0]
    ci_params = kpicalc.model_parameters(res_failure_model, disp=False)[1]

    gammaLower, gammaUpper = ci_params[0]
    alphaLower, alphaUpper = ci_params[1]
    betaLower, betaUpper = ci_params[2]

    T_G, S = simulation.failure_repair_process(data_failure, data_downtime)
    S = [0] + S

    T_G_R, S_R, X_R, D_R, T_R = simulation.sim(rep,
                                               res_failure_model,
                                               res_downtime_model,
                                               numfail=len(T),
                                               timeHorizon=max(T_G))

    # t = kpicalc.time_axis(1, T_G)
    t = linspace(0, max(T_G)).tolist()
    A, conf_int_A = kpicalc.A_Sim(t, T_G_R, S_R)
    availability = (t, A)

    predictions = [
        pred.point_predictor(T[-1], res_failure_model),
        pred.interval_predictor(T[-1], res_failure_model)
    ]
    kaplan_meier_obj = [
        kpicalc.reliability(n,
                            len(data_failure) + 1, X_R)
        for n in range(1,
                       len(data_failure) + 2)
    ]
    renewal_prop = kpicalc.rs_method(500, T, res_failure_model)
    num_failures = kpicalc.num_failures(T)

    btn_results["state"] = "normal"
Exemple #11
0
import analysis
import simulation


G=20
K= 40
Beta = [0.25,0.5,0.75]
Alpha = [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9]

            
anaRes=[]
simRes=[]

for beta in Beta:
    anaRes.append([analysis.ana(K,G,alpha,beta) for alpha in Alpha])
    simRes.append([int(simulation.sim(K,G,alpha,beta)) for alpha in Alpha])
        
print 'K2Galpha = ',Alpha,';'
print 'K2Gbeta = ',Beta,';'
print 'K2GanaRes = [',
for lst in anaRes:
  print lst,';'
print '];'
        
print 'K2GsimRes = [',
for lst in simRes:
  print lst,';'
print '];'
  

'''