def main(): fdh_graph = FDC_Graph() fwc_p1_vm = VM_Process1_시뮬레이터(A_p1, d_p1, C_p1, SEED1) fwc_p1_vm.DoE_Run(lamda_PLS=v1_PLS, Z=Z_DoE, M=M) # DoE Run # p1_VM_Output : lambda_pls 반영 10 runs act결과 반영 vm # p1_ACT_Output : lambda_pls 반영 10 runs act결과 반영 # p1_ez_run : prd - act (실제) # p1_y_act : lambda_pls 반영 안한 act # p1_y_prd : lambda_pls 반영 안하고 10 runs act결과 반영하지 않은 예측 값 p1_VM_Output, p1_ACT_Output, p1_ez_run, p1_y_act, p1_y_prd = fwc_p1_vm.VM_Run(lamda_PLS=v1_PLS, Z=Z_VM, M=M) # p1_q1_mape_Queue = [] # # # metrology 마다 보여주는 MAPE 값이 의미가 없다. # for z in np.arange(0, Z_VM, 1): # mape = fdh_graph.mean_absolute_percentage_error(z + 1, p1_y_act[((z + 1) * M) - 1][0], p1_y_prd[((z + 1) * M) - 1][0]) # p1_q1_mape_Queue.append(mape) # # print('Process-1 q1 Every Metrology MAPE : {0:.2f}%'.format(np.mean(p1_q1_mape_Queue))) # p1_q1_mape_Queue = [] # # for i in range(Z_VM * M): # mape = fdh_graph.mean_absolute_percentage_error(i + 1, p1_y_act[i][0], p1_y_prd[i][0]) # p1_q1_mape_Queue.append(mape) # # print('Process-1 q1 All MAPE : {0:.2f}%'.format(np.mean(p1_q1_mape_Queue))) # # fdh_graph.plt_show1(Z_VM * M, p1_y_act[:, 0:1], p1_y_prd[:, 0:1]) # fdh_graph.plt_show2(Z_VM, p1_ez_run[:, 0:1], p1_ez_run[:, 1:2]) # # np.savetxt("output/p1_VM_Output.csv", p1_VM_Output, delimiter=",", fmt="%.4f") # np.savetxt("output/p1_y_prd.csv", p1_y_prd, delimiter=",", fmt="%.4f") # np.savetxt("output/p1_y_act.csv", p1_y_act, delimiter=",", fmt="%.4f") # np.savetxt("output/p1_ACT_Output.csv", p1_ACT_Output, delimiter=",", fmt="%.4f") min_mape = 100 t = 1000 for m in range(1000): SEED2 = t + m fwc_p2_act = VM_Process2_시뮬레이터(A_p2, d_p2, C_p2, F_p2, v1_PLS, p1_y_prd, p1_y_act, SEED2) fwc_p2_act.DoE_Run(lamda_PLS=v2_PLS, Z=Z_DoE, M=M, f=p1_y_act) #DoE Run ACT값으로 가능 p2_VM_Output, p2_ACT_Output, p2_ez_run, p2_y_act, p2_y_prd = fwc_p2_act.VM_Run(lamda_PLS=v2_PLS, Z=Z_VM, M=M) p2_q2_mape_Queue = [] for i in range(Z_VM * M): mape = fdh_graph.mean_absolute_percentage_error(i + 1, p2_y_act[i][1], p2_y_prd[i][1]) p2_q2_mape_Queue.append(mape) mape = np.mean(p2_q2_mape_Queue) print('Process-2 q2 All MAPE : {0:.2f}%'.format(mape)) if mape < min_mape: min_mape = mape seed_right = SEED2 print('SEED2 : ', SEED2, ' , min_mape = ', min_mape) print('seed_right : ', seed_right, ' , min_mape = ', min_mape)
def main(): fdh_graph = FDC_Graph() fwc_p1_vm = VM_Process1_DynamicSampling_노이즈시뮬레이터(A_p1, d_p1, C_p1, dM, dStart, SEED) fwc_p1_vm.DoE_Run(lamda_PLS=v_PLS, Z=Z_DoE, M=M) #DoE Run VM_Output, ACT_Output, ez_run, y_act, y_prd = fwc_p1_vm.VM_Run( lamda_PLS=v_PLS, Z=RUNS_CNT, M=M) np.savetxt("output/VM_Output.csv", VM_Output, delimiter=",", fmt="%.4f") np.savetxt("output/ACT_Output.csv", ACT_Output, delimiter=",", fmt="%.4f") np.savetxt("output/ez_run.csv", ez_run, delimiter=",", fmt="%.4f") np.savetxt("output/y_act.csv", y_act, delimiter=",", fmt="%.4f") np.savetxt("output/y_prd.csv", y_prd, delimiter=",", fmt="%.4f") fdh_graph.plt_show1(N, y_act[:, 0:1], y_prd[:, 0:1]) fdh_graph.plt_show2(RUNS_CNT, ez_run[:, 0:1], ez_run[:, 1:2], Noise=True) ez_run_out = [] runM = M ez_run_out.append(np.array([0, 0])) for z in np.arange(1, RUNS_CNT + 1): if z == dStart: runM = dM for k in np.arange(z * runM, (z + 1) * runM): ez_run_out.append(ez_run[z]) ez_run_out = np.array(ez_run_out) np.savetxt("output/ez_run2.csv", ez_run_out, delimiter=",", fmt="%.4f") fdh_graph.plt_show5(ez_run_out, N, M, dM, S1, Noise=True) p1_q1_mape_Queue = [] #metrology 마다 보여주는 MAPE 값이 의미가 없다. for z in np.arange(Nz_RUN, 40, 1): mape = fdh_graph.mean_absolute_percentage_error( z + 1, y_act[((z + 1) * M) - 1][0], y_prd[((z + 1) * M) - 1][0]) p1_q1_mape_Queue.append(mape) print('Process-1 q1 Every Metrology MAPE After 15 Lot : {0:.2f}%'.format( np.mean(p1_q1_mape_Queue))) p1_q1_mape_Queue = [] for i in np.arange(Nz_RUN * M, N, 1): mape = fdh_graph.mean_absolute_percentage_error( i + 1, y_act[i][0], y_prd[i][0]) p1_q1_mape_Queue.append(mape) print('Process-1 q1 All MAPE After 15 Lot : {0:.2f}%'.format( np.mean(p1_q1_mape_Queue)))
def main(): fdh_graph = FDC_Graph() fwc_p1_vm = VM_Process1_시뮬레이터(A_p1, d_p1, C_p1, SEED) fwc_p1_vm.DoE_Run(lamda_PLS=v_PLS, Z=Z_DoE, M=M) #DoE Run VM_Output, ACT_Output, ez_run, y_act, y_prd, ez_all_run = fwc_p1_vm.VM_Run(lamda_PLS=v_PLS, Z=Z_VM, M=M) fdh_graph.plt_show1(Z_VM * M, y_act[:, 0:1], y_prd[:, 0:1], 'Process-1 Normal Case', '1') fdh_graph.plt_show2(Z_VM, ez_run[:, 0:1], ez_run[:, 1:2], 'Process-1 Normal Case') p1_q1_mape_Queue = [] #metrology 마다 보여주는 MAPE 값이 의미가 없다. for z in np.arange(0, Z_VM, 1): mape = fdh_graph.mean_absolute_percentage_error(z + 1, y_act[((z + 1) * M) - 1][0], y_prd[((z + 1) * M) - 1][0]) p1_q1_mape_Queue.append(mape) print('Process-1 q1 Every Metrology MAPE : {0:.2f}%'.format(np.mean(p1_q1_mape_Queue))) p1_q1_mape_Queue = [] for i in range(Z_VM * M): mape = fdh_graph.mean_absolute_percentage_error(i + 1, y_act[i][0], y_prd[i][0]) p1_q1_mape_Queue.append(mape) print('Process-1 q1 All MAPE : {0:.2f}%'.format(np.mean(p1_q1_mape_Queue))) # np.savetxt("output/Normal_mape_Queue_Output.csv", p1_mape_Queue, delimiter=",", fmt="%.4f") # np.savetxt("output/Normal_VM_Output.csv", VM_Output, delimiter=",", fmt="%.4f") np.savetxt("output/ez_all_run.csv", ez_all_run, delimiter=",", fmt="%.4f")
def main(): fdh_graph = FDC_Graph() fwc_p1_vm = VM_Process1_시뮬레이터(A_p1, d_p1, C_p1, SEED) fwc_p1_vm.DoE_Run(lamda_PLS=v_PLS, Z=Z_DoE, M=M) #DoE Run VM_Output, ACT_Output, ez_run, y_act, y_prd = fwc_p1_vm.VM_Run( lamda_PLS=v_PLS, Z=Z_VM, M=M) fdh_graph.plt_show1(Z_VM * M, y_act[:, 0:1], y_prd[:, 0:1]) fdh_graph.plt_show2(Z_VM, ez_run[:, 0:1], ez_run[:, 1:2]) p1_q1_mape_Queue = [] #metrology 마다 보여주는 MAPE 값이 의미가 없다. for z in np.arange(0, Z_VM, 1): mape = fdh_graph.mean_absolute_percentage_error( z + 1, y_act[((z + 1) * M) - 1][0], y_prd[((z + 1) * M) - 1][0]) p1_q1_mape_Queue.append(mape) print('Process-1 q1 Every Metrology MAPE : {0:.2f}%'.format( np.mean(p1_q1_mape_Queue))) p1_q1_mape_Queue = [] for i in range(Z_VM * M): mape = fdh_graph.mean_absolute_percentage_error( i + 1, y_act[i][0], y_prd[i][0]) p1_q1_mape_Queue.append(mape) print('Process-1 q1 All MAPE : {0:.2f}%'.format(np.mean(p1_q1_mape_Queue)))
def main(): fdh_graph = FDC_Graph() fwc_p1_vm = VM_Process1_DynamicSampling_시뮬레이터(A_p1, d_p1, C_p1, dM, dStart, SEED) fwc_p1_vm.DoE_Run(lamda_PLS=v_PLS, Z=Z_DoE, M=M) # DoE Run VM_Output, ACT_Output, ez_run, y_act, y_prd = fwc_p1_vm.VM_Run( lamda_PLS=v_PLS, Z=RUNS_CNT, M=M) np.savetxt("output/VM_Output.csv", VM_Output, delimiter=",", fmt="%.4f") np.savetxt("output/ACT_Output.csv", ACT_Output, delimiter=",", fmt="%.4f") np.savetxt("output/ez_run.csv", ez_run, delimiter=",", fmt="%.4f") np.savetxt("output/y_act.csv", y_act, delimiter=",", fmt="%.4f") np.savetxt("output/y_prd.csv", y_prd, delimiter=",", fmt="%.4f") fdh_graph.plt_show1(N, y_act[:, 0:1], y_prd[:, 0:1]) fdh_graph.plt_show2(RUNS_CNT, ez_run[:, 0:1], ez_run[:, 1:2], Noise=False) ez_run_out = [] runM = M ez_run_out.append(np.array([0, 0])) for z in np.arange(1, RUNS_CNT + 1): if z == dStart: runM = dM for k in np.arange(z * runM, (z + 1) * runM): ez_run_out.append(ez_run[z]) #ez_run_out[0] = np.array([0, 0]) ez_run_out = np.array(ez_run_out) np.savetxt("output/ez_run2.csv", ez_run_out, delimiter=",", fmt="%.4f") fdh_graph.plt_show5(ez_run_out, N, M, dM, S1, Noise=False)
def main(): fdh_graph = FDC_Graph() fwc_p1_vm = VM_Process1_노이즈시뮬레이터(A_p1, d_p1, C_p1, SEED) fwc_p1_vm.DoE_Run(lamda_PLS=v_PLS, Z=Z_DoE, M=M) #DoE Run VM_Output, ACT_Output, ez_run, y_act, y_prd, abnormal_p1_ez_all_run_q1 = fwc_p1_vm.VM_Run( lamda_PLS=v_PLS, Z=Z_VM, M=M) # fdh_graph.plt_show1(Z_VM * M, y_act[:, 0:1], y_prd[:, 0:1]) # fdh_graph.plt_show2(Z_VM, ez_run[:, 0:1], ez_run[:, 1:2], Noise=True) fdh_graph.plt_show1( Z_VM * M, y_act[:, 0:1], y_prd[:, 0:1], 'Process-1 Abnormal Case (' + str(Z_VM) + ' Metrology Runs)', '1') #fdh_graph.plt_show2_1(Z_VM * M, ez_run[:, 0:1], ez_run[:, 1:2], 'Process-1 Abnormal Case', color1='bx--', color2='rx-') #np.savetxt("output/p1_ez_run.csv", ez_run, delimiter=",", fmt="%.4f") # for z in np.arange(22, 34, 1): # mape = fdh_graph.mean_absolute_percentage_error(z + 1, y_act[((z + 1) * M) - 1][0], y_prd[((z + 1) * M) - 1][0]) # p1_mape_Queue.append(mape) # for z in np.arange(21, 32, 1): # mape_sum = 0 # for k in np.arange(z * M + 1, ((z + 1) * M) + 1): # mape = fdh_graph.mean_absolute_percentage_error(k, y_act[k][0], y_prd[k][0]) # mape_sum += mape # p1_mape_Queue.append(mape_sum / M) p1_q1_mape_Queue = [] p1_q1_mape_Queue_temp = [] # metrology 마다 보여주는 MAPE 값이 의미가 없다. for z in np.arange(Nz_RUN_1, Z_VM, 1): act = y_act[((z + 1) * M) - 1][0] prd = y_prd[((z + 1) * M) - 1][0] mape = fdh_graph.mean_absolute_percentage_error(z + 1, act, prd) if z >= 15 and z < 20: print('z = ', z, ', act = ', act, ', prd = ', prd, ', ez = ', np.abs(act - prd), ', MAPE = ', mape) p1_q1_mape_Queue_temp.append(np.abs(act - prd)) else: p1_q1_mape_Queue.append(mape) print( 'Process-1 q1 Actual Metrology MAPE between 5 Lots (15 ~ 20 Lots) : {0:.2f}' .format(np.mean(p1_q1_mape_Queue_temp))) print('Process-1 q1 Every Metrology MAPE After 20 Lot : {0:.2f}%'.format( np.mean(p1_q1_mape_Queue))) p1_q1_mape_Queue = [] for i in np.arange(Nz_RUN_2 * M, Z_VM * M, 1): mape = fdh_graph.mean_absolute_percentage_error( i + 1, y_act[i][0], y_prd[i][0]) p1_q1_mape_Queue.append(mape) print('Process-1 q1 All MAPE After 20 Lot : {0:.2f}%'.format( np.mean(p1_q1_mape_Queue))) # np.savetxt("output/noise_mape_Queue.csv", p1_mape_Queue, delimiter=",", fmt="%.4f") # np.savetxt("output/abNormal_VM_Output.csv", VM_Output, delimiter=",", fmt="%.4f") np.savetxt("output/noise_ez_run.csv", ez_run, delimiter=",", fmt="%.4f")
def main(): fdh_graph = FDC_Graph() fwc_p1_vm = VM_Process1_노이즈시뮬레이터(A_p1, d_p1, C_p1, SEED) fwc_p1_vm.DoE_Run(lamda_PLS=v_PLS, Z=Z_DoE, M=M) #DoE Run VM_Output, ACT_Output, ez_run, y_act, y_prd = fwc_p1_vm.VM_Run( lamda_PLS=v_PLS, Z=Z_VM, M=M) fdh_graph.plt_show1(Z_VM * M, y_act[:, 0:1], y_prd[:, 0:1]) fdh_graph.plt_show12(Z_VM, ez_run[:, 0:1], ez_run[:, 1:2]) #np.savetxt("output/p1_ez_run.csv", ez_run, delimiter=",", fmt="%.4f") # for z in np.arange(22, 34, 1): # mape = fdh_graph.mean_absolute_percentage_error(z + 1, y_act[((z + 1) * M) - 1][0], y_prd[((z + 1) * M) - 1][0]) # p1_mape_Queue.append(mape) # for z in np.arange(21, 32, 1): # mape_sum = 0 # for k in np.arange(z * M + 1, ((z + 1) * M) + 1): # mape = fdh_graph.mean_absolute_percentage_error(k, y_act[k][0], y_prd[k][0]) # mape_sum += mape # p1_mape_Queue.append(mape_sum / M) p1_q1_mape_Queue = [] # metrology 마다 보여주는 MAPE 값이 의미가 없다. for z in np.arange(Nz_RUN, Z_VM, 1): mape = fdh_graph.mean_absolute_percentage_error( z + 1, y_act[((z + 1) * M) - 1][0], y_prd[((z + 1) * M) - 1][0]) p1_q1_mape_Queue.append(mape) print('Process-1 q1 Every Metrology MAPE After 15 Lot : {0:.2f}%'.format( np.mean(p1_q1_mape_Queue))) p1_q1_mape_Queue = [] for i in np.arange(Nz_RUN * M, Z_VM * M, 1): mape = fdh_graph.mean_absolute_percentage_error( i + 1, y_act[i][0], y_prd[i][0]) p1_q1_mape_Queue.append(mape) print('Process-1 q1 All MAPE After 15 Lot : {0:.2f}%'.format( np.mean(p1_q1_mape_Queue)))
def main(): fdh_graph = FDC_Graph() fwc_p1_vm = VM_Process1_시뮬레이터(A_p1, d_p1, C_p1, SEED1) fwc_p1_vm.DoE_Run(lamda_PLS=v1_PLS, Z=Z_DoE, M=M) # DoE Run Normal_VMResult, Normal_ACTResult, ez_run, o_y_act, o_y_prd = fwc_p1_vm.VM_Run( lamda_PLS=v1_PLS, Z=Z_VM, M=M) fwc_p1_vm = VM_Process1_DynamicSampling_노이즈시뮬레이터(A_p1, d_p1, C_p1, dM, dStart, SEED1) fwc_p1_vm.DoE_Run(lamda_PLS=v_PLS, Z=Z_DoE, M=M) # DoE Run Error_VMresult, Error_ACTResult, ez_run, p1_y_act, p1_y_prd = fwc_p1_vm.VM_Run( lamda_PLS=v_PLS, Z=RUNS_CNT, M=M) ez_run_out = [] runM = M ez_run_out.append(np.array([0, 0])) for z in np.arange(1, RUNS_CNT + 1): if z == dStart: runM = dM for k in np.arange(z * runM, (z + 1) * runM): ez_run_out.append(ez_run[z]) ez_run_out = np.array(ez_run_out) p1_q1_mape_Queue = [] # metrology 마다 보여주는 MAPE 값이 의미가 없다. for z in np.arange(Nz_RUN_1, Z_VM, 1): mape = fdh_graph.mean_absolute_percentage_error( z + 1, p1_y_act[((z + 1) * M) - 1][0], p1_y_prd[((z + 1) * M) - 1][0]) p1_q1_mape_Queue.append(mape) print('Process-1 q1 Every Metrology MAPE After 15 Lot : {0:.2f}%'.format( np.mean(p1_q1_mape_Queue))) p1_q1_mape_Queue = [] for i in np.arange(Nz_RUN_1 * M, Z_VM * M, 1): mape = fdh_graph.mean_absolute_percentage_error( i + 1, p1_y_act[i][0], p1_y_prd[i][0]) p1_q1_mape_Queue.append(mape) print('Process-1 q1 All MAPE After 15 Lot : {0:.2f}%'.format( np.mean(p1_q1_mape_Queue))) min_mape = 100 t = 1000 for m in range(1000): SEED2 = t + m fwc_p2_act = VM_Process2_노이즈시뮬레이터(A_p2, d_p2, C_p2, F_p2, v1_PLS, p1_y_prd, p1_y_act, SEED2) fwc_p2_act.DoE_Run(lamda_PLS=v2_PLS, Z=Z_DoE, M=M, f=o_y_act) # DoE Run ACT값으로 가능 p2_VM_Output, p2_ACT_Output, p2_ez_run, p2_y_act, p2_y_prd = fwc_p2_act.VM_Run( lamda_PLS=v2_PLS, Z=Z_VM, M=M) p2_q2_mape_Queue = [] for i in np.arange(Nz_RUN_2 * M, Z_VM * M, 1): mape = fdh_graph.mean_absolute_percentage_error( i + 1, p2_y_act[i][1], p2_y_prd[i][1]) p2_q2_mape_Queue.append(mape) mape = np.mean(p2_q2_mape_Queue) print('Process-2 q2 All MAPE After 20 Lot : {0:.2f}%'.format(mape)) if mape < min_mape: min_mape = mape seed_right = SEED2 print('SEED2 : ', SEED2, ' , min_mape = ', min_mape) print('seed_right : ', seed_right, ' , min_mape = ', min_mape) p2_q2_mape_Queue = [] for z in np.arange(15, 20, 1): # 15 ~ 20 5개 Metrology만 본 상태 mape = fdh_graph.mean_absolute_percentage_error( z + 1, p2_y_act[((z + 1) * M) - 1][1], p2_y_prd[((z + 1) * M) - 1][1]) p2_q2_mape_Queue.append(mape) print('Process-2 q2 Every Metrology MAPE After 5 Lot : {0:.2f}%'.format( np.mean(p2_q2_mape_Queue)))
def main(): fdh_graph = FDC_Graph() fwc_p1_vm = VM_Process1_시뮬레이터(A_p1, d_p1, C_p1, SEED1) fwc_p1_vm.DoE_Run(lamda_PLS=v1_PLS, Z=Z_DoE, M=M) # DoE Run Normal_VMResult, Normal_ACTResult, ez_run, o_y_act, o_y_prd = fwc_p1_vm.VM_Run(lamda_PLS=v1_PLS, Z=Z_VM, M=M) fwc_p1_vm = VM_Process1_DynamicSampling_노이즈시뮬레이터(A_p1, d_p1, C_p1, dM, dStart, SEED1) fwc_p1_vm.DoE_Run(lamda_PLS=v_PLS, Z=Z_DoE, M=M) # DoE Run VM_Output, ACT_Output, ez_run, p1_y_act, p1_y_prd = fwc_p1_vm.VM_Run(lamda_PLS=v_PLS, Z=RUNS_CNT, M=M) fdh_graph.plt_show1(N, p1_y_act[:, 0:1], p1_y_prd[:, 0:1]) ez_run_out = [] runM = M ez_run_out.append(np.array([0, 0])) for z in np.arange(1, RUNS_CNT + 1): if z == dStart: runM = dM for k in np.arange(z * runM, (z + 1) * runM): ez_run_out.append(ez_run[z]) ez_run_out = np.array(ez_run_out) fdh_graph.plt_show5(ez_run_out, N, M, dM, S1, Noise=True) p1_q1_mape_Queue = [] # metrology 마다 보여주는 MAPE 값이 의미가 없다. for z in np.arange(Nz_RUN, Z_VM, 1): mape = fdh_graph.mean_absolute_percentage_error(z + 1, p1_y_act[((z + 1) * M) - 1][0], p1_y_prd[((z + 1) * M) - 1][0]) p1_q1_mape_Queue.append(mape) print('Process-1 q1 Every Metrology MAPE After 15 Lot : {0:.2f}%'.format(np.mean(p1_q1_mape_Queue))) p1_q1_mape_Queue = [] for i in np.arange(Nz_RUN * M, Z_VM * M, 1): mape = fdh_graph.mean_absolute_percentage_error(i + 1, p1_y_act[i][0], p1_y_prd[i][0]) p1_q1_mape_Queue.append(mape) print('Process-1 q1 All MAPE After 15 Lot : {0:.2f}%'.format(np.mean(p1_q1_mape_Queue))) np.savetxt("output/p1_mape.csv", p1_q1_mape_Queue, delimiter=",", fmt="%.4f") np.savetxt("output/Error_VMresult1.csv", VM_Output, delimiter=",", fmt="%.4f") np.savetxt("output/p1_y_prd.csv", p1_y_prd, delimiter=",", fmt="%.4f") np.savetxt("output/p1_y_act.csv", p1_y_act, delimiter=",", fmt="%.4f") np.savetxt("output/Error_ACTResult.csv", ACT_Output, delimiter=",", fmt="%.4f") fwc_p2_act = VM_Process2_시뮬레이터(A_p2, d_p2, C_p2, F_p2, v1_PLS, p1_y_prd, p1_y_act, SEED2) fwc_p2_act.DoE_Run(lamda_PLS=v2_PLS, Z=Z_DoE, M=M, f=o_y_act) # DoE Run ACT값으로 가능 p2_VM_Output, p2_ACT_Output, p2_ez_run, p2_y_act, p2_y_prd = fwc_p2_act.VM_Run(lamda_PLS=v2_PLS, Z=Z_VM, M=M) fdh_graph.plt_show1(Z_VM * M, p2_y_act[:, 1:2], p2_y_prd[:, 1:2]) fdh_graph.plt_show2(Z_VM, p2_ez_run[:, 0:1], p2_ez_run[:, 1:2], Noise=True) p2_q2_mape_Queue = [] # metrology 마다 보여주는 MAPE 값이 의미가 없다. for z in np.arange(Nz_RUN, Z_VM, 1): mape = fdh_graph.mean_absolute_percentage_error(z + 1, p2_y_act[((z + 1) * M) - 1][1], p2_y_prd[((z + 1) * M) - 1][1]) #print("으아아악 : ", p2_y_act[((z + 1) * M) - 1][1], p2_y_prd[((z + 1) * M) - 1][1]) p2_q2_mape_Queue.append(mape) print('Process-2 q2 Every Metrology MAPE After 15 Lot : {0:.2f}%'.format(np.mean(p2_q2_mape_Queue))) p2_q2_mape_Queue = [] for i in np.arange(Nz_RUN * M, Z_VM * M, 1): mape = fdh_graph.mean_absolute_percentage_error(i + 1, p2_y_act[i][1], p2_y_prd[i][1]) p2_q2_mape_Queue.append(mape) print('Process-2 q2 All MAPE After 15 Lot : {0:.2f}%'.format(np.mean(p2_q2_mape_Queue)))
def main(): noise_ez_run = np.loadtxt('output/noise_ez_run.csv', delimiter=",", dtype=np.float32) abnormal_p2_ez_all_run_q2 = np.loadtxt( 'D:/10. 대학원/04. Source/09. VM_Source/04. VMOnly/output/abnormal_p2_ez_all_run_q2.csv', delimiter=",", dtype=np.float32) before_normal_p2_ez_all_run_q2 = np.loadtxt( 'D:/10. 대학원/04. Source/09. VM_Source/04. VMOnly/output/before_normal_p2_ez_all_run_q2.csv', delimiter=",", dtype=np.float32) fdh_graph = FDC_Graph() fwc_p1_vm = VM_Process1_시뮬레이터(A_p1, d_p1, C_p1, SEED1) fwc_p1_vm.DoE_Run(lamda_PLS=v1_PLS, Z=Z_DoE, M=M) # DoE Run Normal_VMResult, Normal_ACTResult, ez_run, o_y_act, o_y_prd, _ = fwc_p1_vm.VM_Run( lamda_PLS=v1_PLS, Z=Z_VM, M=M) fwc_p1_vm = VM_Process1_DynamicSampling_노이즈시뮬레이터(A_p1, d_p1, C_p1, dM, dStart, SEED1) fwc_p1_vm.DoE_Run(lamda_PLS=v_PLS, Z=Z_DoE, M=M) # DoE Run VM_Output, ACT_Output, ez_run, p1_y_act, p1_y_prd, p1_ez_all_run_q1 = fwc_p1_vm.VM_Run( lamda_PLS=v_PLS, Z=RUNS_CNT, M=M) #fdh_graph.plt_show1(N, p1_y_act[:, 0:1], p1_y_prd[:, 0:1]) ez_run_out = [] noise_ez_run_out = [] runM = M noise_ez_run_out.append(np.array([0, 0])) for z in np.arange(1, old_N + 1): for k in np.arange(z * M, (z + 1) * M): noise_ez_run_out.append(noise_ez_run[z]) noise_ez_run_out = np.array(noise_ez_run_out) ez_run_out.append(np.array([0, 0])) for z in np.arange(1, RUNS_CNT + 1): if z == dStart: runM = dM for k in np.arange(z * runM, (z + 1) * runM): ez_run_out.append(ez_run[z]) ez_run_out = np.array(ez_run_out) #fdh_graph.plt_show5(ez_run_out, N, M, dM, S1, Noise=True) #fdh_graph.plt_show5_1(noise_ez_run_out, ez_run_out, N, M, dM, S1, type=1) p1_q1_mape_Queue = [] # metrology 마다 보여주는 MAPE 값이 의미가 없다. for z in np.arange(Nz_RUN, Z_VM, 1): mape = fdh_graph.mean_absolute_percentage_error( z + 1, p1_y_act[((z + 1) * M) - 1][0], p1_y_prd[((z + 1) * M) - 1][0]) p1_q1_mape_Queue.append(mape) print('Process-1 q1 Every Metrology MAPE After 15 Lot : {0:.2f}%'.format( np.mean(p1_q1_mape_Queue))) p1_q1_mape_Queue = [] for i in np.arange(Nz_RUN * M, Z_VM * M, 1): mape = fdh_graph.mean_absolute_percentage_error( i + 1, p1_y_act[i][0], p1_y_prd[i][0]) p1_q1_mape_Queue.append(mape) print('Process-1 q1 All MAPE After 15 Lot : {0:.2f}%'.format( np.mean(p1_q1_mape_Queue))) fwc_p2_act = VM_Process2_시뮬레이터(A_p2, d_p2, C_p2, F_p2, v1_PLS, p1_y_prd, p1_y_act, SEED2) fwc_p2_act.DoE_Run(lamda_PLS=v2_PLS, Z=Z_DoE, M=M, f=o_y_act) # DoE Run ACT값으로 가능 p2_VM_Output, p2_ACT_Output, p2_ez_run, p2_y_act, p2_y_prd, p2_ez_all_run_q2 = fwc_p2_act.VM_Run( lamda_PLS=v2_PLS, Z=Z_VM, M=M) #fdh_graph.plt_show1(Z_VM * M, p2_y_act[:, 1:2], p2_y_prd[:, 1:2]) #fdh_graph.plt_show2(Z_VM, p2_ez_run[:, 0:1], p2_ez_run[:, 1:2], Noise=True) fdh_graph.plt_show1( Z_VM * M, p2_y_act[:, 1:2], p2_y_prd[:, 1:2], 'Process-2 Abnormal Case with Process-1 Dynamic Sampling', '2') fdh_graph.plt_show2_2( Z_VM * M, abnormal_p2_ez_all_run_q2[:, 1:2], p2_ez_all_run_q2[:, 1:2], 'Process-2 UPStream Rule X with Process-1 Dynamic Sampling', '2', color1='bx-', color2='rx--') #fdh_graph.plt_show2_2(Z_VM * M, abnormal_p2_ez_all_run_q2[:, 1:2], p2_ez_all_run_q2[:, 1:2], before_normal_p2_ez_all_run_q2[:, 1:2], 'Process-2 Abnormal Case', '2', color1='bx-', color2='rx--', color3='gx--') p2_q2_mape_Queue = [] # metrology 마다 보여주는 MAPE 값이 의미가 없다. for z in np.arange(Nz_RUN, Z_VM, 1): mape = fdh_graph.mean_absolute_percentage_error( z + 1, p2_y_act[((z + 1) * M) - 1][1], p2_y_prd[((z + 1) * M) - 1][1]) #print("으아아악 : ", p2_y_act[((z + 1) * M) - 1][1], p2_y_prd[((z + 1) * M) - 1][1]) p2_q2_mape_Queue.append(mape) print('Process-2 q2 Every Metrology MAPE After 15 Lot : {0:.2f}%'.format( np.mean(p2_q2_mape_Queue))) p2_q2_mape_Queue = [] for i in np.arange(Nz_RUN * M, Z_VM * M, 1): mape = fdh_graph.mean_absolute_percentage_error( i + 1, p2_y_act[i][1], p2_y_prd[i][1]) p2_q2_mape_Queue.append(mape) print('Process-2 q2 All MAPE After 15 Lot : {0:.2f}%'.format( np.mean(p2_q2_mape_Queue)))
def main(): fdh_graph = FDC_Graph() ## Metrology마다 차이를 보여줌.. 근데.. Process-2의 변동량이 크지 않아 바꾸기로 결정 ('19.09.25) normal_p1_ez_all_run_q1 = np.loadtxt('output/p1_ez_all_run_q1.csv', delimiter=",", dtype=np.float32) normal_p2_ez_all_run_q2 = np.loadtxt('output/p2_ez_all_run_q2.csv', delimiter=",", dtype=np.float32) fwc_p1_vm = VM_Process1_시뮬레이터(A_p1, d_p1, C_p1, SEED1) fwc_p1_vm.DoE_Run(lamda_PLS=v1_PLS, Z=Z_DoE, M=M) # DoE Run Normal_VMResult, Normal_ACTResult, ez_run, o_y_act, o_y_prd, _ = fwc_p1_vm.VM_Run( lamda_PLS=v1_PLS, Z=Z_VM, M=M) fwc_p1_vm = VM_Process1_노이즈시뮬레이터(A_p1, d_p1, C_p1, SEED1) fwc_p1_vm.DoE_Run(lamda_PLS=v1_PLS, Z=Z_DoE, M=M) # DoE Run Error_VMresult, Error_ACTResult, ez_run, p1_y_act, p1_y_prd, abnormal_p1_ez_all_run_q1 = fwc_p1_vm.VM_Run( lamda_PLS=v1_PLS, Z=Z_VM, M=M) fdh_graph.plt_show1(Z_VM * M, p1_y_act[:, 0:1], p1_y_prd[:, 0:1], 'Process-1 Abnormal Case', '1') fdh_graph.plt_show2_2(Z_VM * M, normal_p1_ez_all_run_q1[:, 0:1], abnormal_p1_ez_all_run_q1[:, 0:1], 'Process-1 Abnormal Case', '1', color1='bx-', color2='rx--') #fdh_graph.plt_show2_1(Z_VM * M, p1_ez_run_q1, ez_run[:, 0:1], 'Process-1 Abnormal Case', color1='bx--', color2='rx-') p1_q1_mape_Queue = [] # metrology 마다 보여주는 MAPE 값이 의미가 없다. for z in np.arange(Nz_RUN, Z_VM, 1): mape = fdh_graph.mean_absolute_percentage_error( z + 1, p1_y_act[((z + 1) * M) - 1][0], p1_y_prd[((z + 1) * M) - 1][0]) p1_q1_mape_Queue.append(mape) print('Process-1 q1 Every Metrology MAPE After 15 Lot : {0:.2f}%'.format( np.mean(p1_q1_mape_Queue))) p1_q1_mape_Queue = [] for i in np.arange(Nz_RUN * M, Z_VM * M, 1): mape = fdh_graph.mean_absolute_percentage_error( i + 1, p1_y_act[i][0], p1_y_prd[i][0]) p1_q1_mape_Queue.append(mape) print('Process-1 q1 All MAPE After 15 Lot : {0:.2f}%'.format( np.mean(p1_q1_mape_Queue))) # np.savetxt("output/p1_mape.csv", p1_q1_mape_Queue, delimiter=",", fmt="%.4f") # np.savetxt("output/Error_VMresult1.csv", Error_VMresult, delimiter=",", fmt="%.4f") # np.savetxt("output/p1_y_prd.csv", p1_y_prd, delimiter=",", fmt="%.4f") # np.savetxt("output/p1_y_act.csv", p1_y_act, delimiter=",", fmt="%.4f") # np.savetxt("output/Error_ACTResult.csv", Error_ACTResult, delimiter=",", fmt="%.4f") fwc_p2_act = VM_Process2_시뮬레이터(A_p2, d_p2, C_p2, F_p2, v1_PLS, p1_y_prd, p1_y_act, SEED2) fwc_p2_act.DoE_Run(lamda_PLS=v2_PLS, Z=Z_DoE, M=M, f=o_y_act) # DoE Run ACT값으로 가능 p2_VM_Output, p2_ACT_Output, p2_ez_run, p2_y_act, p2_y_prd, abnormal_p2_ez_all_run_q2 = fwc_p2_act.VM_Run( lamda_PLS=v2_PLS, Z=Z_VM, M=M) np.savetxt("output/abnormal_p2_ez_all_run_q2.csv", abnormal_p2_ez_all_run_q2, delimiter=",", fmt="%.4f") np.savetxt("output/before_normal_p2_ez_all_run_q2.csv", normal_p2_ez_all_run_q2, delimiter=",", fmt="%.4f") fdh_graph.plt_show1(Z_VM * M, p2_y_act[:, 1:2], p2_y_prd[:, 1:2], 'Process-2 Abnormal Case', '2') fdh_graph.plt_show2_2(Z_VM * M, normal_p2_ez_all_run_q2[:, 1:2], abnormal_p2_ez_all_run_q2[:, 1:2], 'Process-2 Abnormal Case', '2', color1='bx-', color2='rx--') #fdh_graph.plt_show2_2(Z_VM * M, normal_p2_ez_all_run_q2[:, 0:1], abnormal_p2_ez_all_run_q2[:, 0:1], 'Process-2 Abnormal Case', color1='bx-', color2='rx--') #fdh_graph.plt_show2(Z_VM, p2_ez_run_q2, p2_ez_run[:, 1:2], 'Process-2 Abnormal Case') p2_q2_mape_Queue = [] # metrology 마다 보여주는 MAPE 값이 의미가 없다. for z in np.arange(Nz_RUN, Z_VM, 1): mape = fdh_graph.mean_absolute_percentage_error( z + 1, p2_y_act[((z + 1) * M) - 1][1], p2_y_prd[((z + 1) * M) - 1][1]) #print("으아아악 : ", p2_y_act[((z + 1) * M) - 1][1], p2_y_prd[((z + 1) * M) - 1][1]) p2_q2_mape_Queue.append(mape) print('Process-2 q2 Every Metrology MAPE After 15 Lot : {0:.2f}%'.format( np.mean(p2_q2_mape_Queue))) p2_q2_mape_Queue = [] for i in np.arange(Nz_RUN * M, Z_VM * M, 1): mape = fdh_graph.mean_absolute_percentage_error( i + 1, p2_y_act[i][1], p2_y_prd[i][1]) p2_q2_mape_Queue.append(mape) print('Process-2 q2 All MAPE After 15 Lot : {0:.2f}%'.format( np.mean(p2_q2_mape_Queue)))
def main(): fdh_graph = FDC_Graph() fwc_p1_vm = VM_Process1_시뮬레이터(A_p1, d_p1, C_p1, SEED1) fwc_p1_vm.DoE_Run(lamda_PLS=v1_PLS, Z=Z_DoE, M=M) # DoE Run # p1_VM_Output : lambda_pls 반영 10 runs act결과 반영 vm # p1_ACT_Output : lambda_pls 반영 10 runs act결과 반영 # p1_ez_run : prd - act (실제) # p1_y_act : lambda_pls 반영 안한 act # p1_y_prd : lambda_pls 반영 안하고 10 runs act결과 반영하지 않은 예측 값 p1_VM_Output, p1_ACT_Output, p1_ez_run, p1_y_act, p1_y_prd, p1_ez_all_run = fwc_p1_vm.VM_Run( lamda_PLS=v1_PLS, Z=Z_VM, M=M) p1_q1_mape_Queue = [] # metrology 마다 보여주는 MAPE 값이 의미가 없다. for z in np.arange(0, Z_VM, 1): mape = fdh_graph.mean_absolute_percentage_error( z + 1, p1_y_act[((z + 1) * M) - 1][0], p1_y_prd[((z + 1) * M) - 1][0]) p1_q1_mape_Queue.append(mape) print('Process-1 q1 Every Metrology MAPE : {0:.2f}%'.format( np.mean(p1_q1_mape_Queue))) p1_q1_mape_Queue = [] for i in range(Z_VM * M): mape = fdh_graph.mean_absolute_percentage_error( i + 1, p1_y_act[i][0], p1_y_prd[i][0]) p1_q1_mape_Queue.append(mape) print('Process-1 q1 All MAPE : {0:.2f}%'.format(np.mean(p1_q1_mape_Queue))) fdh_graph.plt_show1(Z_VM * M, p1_y_act[:, 0:1], p1_y_prd[:, 0:1], 'Process-1 Normal Case', '1') fdh_graph.plt_show2(Z_VM, p1_ez_run[:, 0:1], p1_ez_run[:, 1:2], 'Process-1 Normal Case') # np.savetxt("output/p1_VM_Output.csv", p1_VM_Output, delimiter=",", fmt="%.4f") # np.savetxt("output/p1_y_prd.csv", p1_y_prd, delimiter=",", fmt="%.4f") # np.savetxt("output/p1_y_act.csv", p1_y_act, delimiter=",", fmt="%.4f") # np.savetxt("output/p1_ACT_Output.csv", p1_ACT_Output, delimiter=",", fmt="%.4f") np.savetxt("output/p1_ez_all_run_q1.csv", p1_ez_all_run, delimiter=",", fmt="%.4f") fwc_p2_act = VM_Process2_시뮬레이터(A_p2, d_p2, C_p2, F_p2, v1_PLS, p1_y_prd, p1_y_act, SEED2) fwc_p2_act.DoE_Run(lamda_PLS=v2_PLS, Z=Z_DoE, M=M, f=p1_y_act) #DoE Run ACT값으로 가능 p2_VM_Output, p2_ACT_Output, p2_ez_run, p2_y_act, p2_y_prd, p2_ez_all_run = fwc_p2_act.VM_Run( lamda_PLS=v2_PLS, Z=Z_VM, M=M) p2_q2_mape_Queue = [] for z in range(Z_VM): mape = fdh_graph.mean_absolute_percentage_error( z + 1, p2_y_act[((z + 1) * M) - 1][1], p2_y_prd[((z + 1) * M) - 1][1]) p2_q2_mape_Queue.append(mape) print('Process-2 q2 Every Metrology MAPE : {0:.2f}%'.format( np.mean(p2_q2_mape_Queue))) p2_q2_mape_Queue = [] for i in range(Z_VM * M): mape = fdh_graph.mean_absolute_percentage_error( i + 1, p2_y_act[i][1], p2_y_prd[i][1]) p2_q2_mape_Queue.append(mape) print('Process-2 q2 All MAPE : {0:.2f}%'.format(np.mean(p2_q2_mape_Queue))) # for i in np.arange(22 * M, 34 * M, 1): # mape = fdh_graph.mean_absolute_percentage_error(i + 1, p2_y_act[i][1], p2_y_prd[i][1]) # p2_mape_Queue.append(mape) fdh_graph.plt_show1(Z_VM * M, p2_y_act[:, 1:2], p2_y_prd[:, 1:2], 'Process-2 Normal Case', '2') fdh_graph.plt_show2(Z_VM, p2_ez_run[:, 0:1], p2_ez_run[:, 1:2], 'Process-2 Normal Case') # np.savetxt("output/p2_VM_Output.csv", p1_VM_Output, delimiter=",", fmt="%.4f") # np.savetxt("output/p2_y_prd.csv", p1_y_prd, delimiter=",", fmt="%.4f") # np.savetxt("output/p2_y_act.csv", p1_y_act, delimiter=",", fmt="%.4f") # np.savetxt("output/p2_ACT_Output.csv", p1_ACT_Output, delimiter=",", fmt="%.4f") np.savetxt("output/p2_ez_all_run_q2.csv", p2_ez_all_run, delimiter=",", fmt="%.4f")
def main(): fdh_graph = FDC_Graph() normal_p2_ez_all_run_q2 = np.loadtxt('output/p2_ez_all_run_q2.csv', delimiter=",", dtype=np.float32) fwc_p1_vm = VM_Process1_시뮬레이터(A_p1, d_p1, C_p1, SEED1) fwc_p1_vm.DoE_Run(lamda_PLS=v1_PLS, Z=Z_DoE, M=M) # DoE Run Normal_VMResult, Normal_ACTResult, ez_run, o_y_act, o_y_prd, _ = fwc_p1_vm.VM_Run( lamda_PLS=v1_PLS, Z=Z_VM, M=M) fwc_p1_vm = VM_Process1_노이즈시뮬레이터(A_p1, d_p1, C_p1, SEED1) fwc_p1_vm.DoE_Run(lamda_PLS=v1_PLS, Z=Z_DoE, M=M) # DoE Run Error_VMresult, Error_ACTResult, ez_run, p1_y_act, p1_y_prd, _ = fwc_p1_vm.VM_Run( lamda_PLS=v1_PLS, Z=Z_VM, M=M) # fdh_graph.plt_show1(Z_VM * M, p1_y_act[:, 0:1], p1_y_prd[:, 0:1]) # fdh_graph.plt_show2(Z_VM, ez_run[:, 0:1], ez_run[:, 1:2]) # np.savetxt("output/Error_VMresult2.csv", Error_VMresult, delimiter=",", fmt="%.4f") # np.savetxt("output/Error_ACTResult2.csv", Error_ACTResult, delimiter=",", fmt="%.4f") # for z in np.arange(21, 32, 1): # for k in np.arange(z * M, (z + 1) * M): # Error_VMresult[k] = Error_VMresult[((z + 1) * M) - 1] p1_q1_mape_Queue = [] # metrology 마다 보여주는 MAPE 값이 의미가 없다. for z in np.arange(Nz_RUN, Z_VM, 1): mape = fdh_graph.mean_absolute_percentage_error( z + 1, p1_y_act[((z + 1) * M) - 1][0], p1_y_prd[((z + 1) * M) - 1][0]) p1_q1_mape_Queue.append(mape) print('Process-1 q1 Every Metrology MAPE After 15 Lot : {0:.2f}%'.format( np.mean(p1_q1_mape_Queue))) p1_q1_mape_Queue = [] for i in np.arange(Nz_RUN * M, Z_VM * M, 1): mape = fdh_graph.mean_absolute_percentage_error( i + 1, p1_y_act[i][0], p1_y_prd[i][0]) p1_q1_mape_Queue.append(mape) print('Process-1 q1 All MAPE After 15 Lot : {0:.2f}%'.format( np.mean(p1_q1_mape_Queue))) p1_q1_mape_Queue = [] for z in np.arange(0, Z_VM, 1): mape = fdh_graph.mean_absolute_percentage_error( z + 1, p1_y_act[((z + 1) * M) - 1][0], p1_y_prd[((z + 1) * M) - 1][0]) p1_q1_mape_Queue.append(mape) # np.savetxt("output/p1_mape.csv", p1_q1_mape_Queue, delimiter=",", fmt="%.4f") # np.savetxt("output/Error_VMresult1.csv", Error_VMresult, delimiter=",", fmt="%.4f") # np.savetxt("output/p1_y_prd.csv", p1_y_prd, delimiter=",", fmt="%.4f") # np.savetxt("output/p1_y_act.csv", p1_y_act, delimiter=",", fmt="%.4f") # np.savetxt("output/Error_ACTResult.csv", Error_ACTResult, delimiter=",", fmt="%.4f") for z in np.arange(Nz_RUN, Z_VM, 1): if p1_q1_mape_Queue[z] >= Upstream_Rule_MAPE: x1 = p1_y_act[(z * M) - 1] x2 = p1_y_act[((z + 1) * M) - 1] s = (x2 - x1) / M for k in np.arange(z * M, (z + 1) * M - 1, 1): i = k % (z * M) + 1 p1_y_prd[k] = x1 + s * i #print('test : ', x1, x2, p1_y_prd[k]) #Error_VMresult[k] = Error_VMresult[((z + 1) * M) - 1] # for z in np.arange(15, 40, 1): # if p1_mape_Queue[z] >= 10: # for k in np.arange(z * M, (z + 1) * M - 1): # Error_VMresult[k] = Error_VMresult[((z + 1) * M) - 1] np.savetxt("output/Error_VMresult_OK.csv", p1_y_prd, delimiter=",", fmt="%.4f") fwc_p2_act = VM_Process2_시뮬레이터(A_p2, d_p2, C_p2, F_p2, v1_PLS, p1_y_prd, p1_y_act, SEED2) fwc_p2_act.DoE_Run(lamda_PLS=v2_PLS, Z=Z_DoE, M=M, f=o_y_act) # DoE Run ACT값으로 가능 p2_VM_Output, p2_ACT_Output, p2_ez_run, p2_y_act, p2_y_prd, reactive_p2_ez_all_run_q2 = fwc_p2_act.VM_Run( lamda_PLS=v2_PLS, Z=Z_VM, M=M) np.savetxt("output/reactive_p2_ez_all_run_q2.csv", reactive_p2_ez_all_run_q2, delimiter=",", fmt="%.4f") np.savetxt("output/after_normal_p2_ez_all_run_q2.csv", normal_p2_ez_all_run_q2, delimiter=",", fmt="%.4f") fdh_graph.plt_show1(Z_VM * M, p2_y_act[:, 1:2], p2_y_prd[:, 1:2], 'Reactive Process-2 Event Processing Case', '2') fdh_graph.plt_show2_2(Z_VM * M, normal_p2_ez_all_run_q2[:, 1:2], reactive_p2_ez_all_run_q2[:, 1:2], 'Reactive Process-2 Event Processing Case', '2', color1='bx-', color2='rx--') #fdh_graph.plt_show2(Z_VM, p2_ez_run[:, 0:1], p2_ez_run[:, 1:2]) p2_q2_mape_Queue = [] for i in np.arange(Nz_RUN * M, Z_VM * M, 1): mape = fdh_graph.mean_absolute_percentage_error( i + 1, p2_y_act[i][1], p2_y_prd[i][1]) p2_q2_mape_Queue.append(mape) print('Process-2 q2 All MAPE After 15 Lot : {0:.2f}%'.format( np.mean(p2_q2_mape_Queue))) # metrology 마다 보여주는 MAPE 값이 의미가 없다. for z in np.arange(Nz_RUN, Z_VM, 1): mape = fdh_graph.mean_absolute_percentage_error( z + 1, p2_y_act[((z + 1) * M) - 1][1], p2_y_prd[((z + 1) * M) - 1][1]) p2_q2_mape_Queue.append(mape) print('Process-2 q2 Every Metrology MAPE After 15 Lot : {0:.2f}%'.format( np.mean(p2_q2_mape_Queue))) p2_q2_mape_Queue = [] np.savetxt("output/p2_mape.csv", p2_q2_mape_Queue, delimiter=",", fmt="%.4f") np.savetxt("output/p2_ACT_Output.csv", Error_VMresult, delimiter=",", fmt="%.4f") np.savetxt("output/p1_y_prd.csv", p2_y_prd, delimiter=",", fmt="%.4f") np.savetxt("output/p1_y_act.csv", p2_y_act, delimiter=",", fmt="%.4f") np.savetxt("output/p2_ACT_Output.csv", Error_ACTResult, delimiter=",", fmt="%.4f")
def main(): fdh_graph = FDC_Graph() fwc_p1_vm = VM_Process1_시뮬레이터(A_p1, d_p1, C_p1, SEED1) fwc_p1_vm.DoE_Run(lamda_PLS=v1_PLS, Z=Z_DoE, M=M) # DoE Run Normal_VMResult, Normal_ACTResult, ez_run, o_y_act, o_y_prd = fwc_p1_vm.VM_Run( lamda_PLS=v1_PLS, Z=Z_VM, M=M) fwc_p1_vm = VM_Process1_DynamicSampling_노이즈시뮬레이터(A_p1, d_p1, C_p1, dM, dStart, SEED1) fwc_p1_vm.DoE_Run(lamda_PLS=v_PLS, Z=Z_DoE, M=M) # DoE Run VM_Output, ACT_Output, ez_run, p1_y_act, p1_y_prd = fwc_p1_vm.VM_Run( lamda_PLS=v_PLS, Z=RUNS_CNT, M=M) fdh_graph.plt_show1(Z_VM * M, p1_y_act[:, 0:1], p1_y_prd[:, 0:1]) ez_run_out = [] runM = M ez_run_out.append(np.array([0, 0])) for z in np.arange(1, RUNS_CNT + 1): if z == dStart: runM = dM for k in np.arange(z * runM, (z + 1) * runM): ez_run_out.append(ez_run[z]) ez_run_out = np.array(ez_run_out) fdh_graph.plt_show5(ez_run_out, N, M, dM, S1, Noise=True) np.savetxt("output/Error_VMresult2.csv", VM_Output, delimiter=",", fmt="%.4f") np.savetxt("output/Error_ACTResult2.csv", ACT_Output, delimiter=",", fmt="%.4f") # for z in np.arange(21, 32, 1): # for k in np.arange(z * M, (z + 1) * M): # Error_VMresult[k] = Error_VMresult[((z + 1) * M) - 1] p1_q1_mape_Queue = [] # metrology 마다 보여주는 MAPE 값이 의미가 없다. for z in np.arange(Nz_RUN, Z_VM, 1): mape = fdh_graph.mean_absolute_percentage_error( z + 1, p1_y_act[((z + 1) * M) - 1][0], p1_y_prd[((z + 1) * M) - 1][0]) p1_q1_mape_Queue.append(mape) print('Process-1 q1 Every Metrology MAPE After 15 Lot : {0:.2f}%'.format( np.mean(p1_q1_mape_Queue))) p1_q1_mape_Queue = [] for i in np.arange(Nz_RUN * M, Z_VM * M, 1): mape = fdh_graph.mean_absolute_percentage_error( i + 1, p1_y_act[i][0], p1_y_prd[i][0]) p1_q1_mape_Queue.append(mape) print('Process-1 q1 All MAPE After 15 Lot : {0:.2f}%'.format( np.mean(p1_q1_mape_Queue))) p1_q1_mape_Queue = [] for z in np.arange(0, Z_VM, 1): mape = fdh_graph.mean_absolute_percentage_error( z + 1, p1_y_act[((z + 1) * M) - 1][0], p1_y_prd[((z + 1) * M) - 1][0]) p1_q1_mape_Queue.append(mape) np.savetxt("output/p1_mape.csv", p1_q1_mape_Queue, delimiter=",", fmt="%.4f") np.savetxt("output/Error_VMresult1.csv", VM_Output, delimiter=",", fmt="%.4f") np.savetxt("output/p1_y_prd.csv", p1_y_prd, delimiter=",", fmt="%.4f") np.savetxt("output/p1_y_act.csv", p1_y_act, delimiter=",", fmt="%.4f") np.savetxt("output/Error_ACTResult.csv", ACT_Output, delimiter=",", fmt="%.4f") for z in np.arange(Nz_RUN, Z_VM, 1): if p1_q1_mape_Queue[z] >= Upstream_Rule_MAPE: x1 = p1_y_act[(z * M) - 1] x2 = p1_y_act[((z + 1) * M) - 1] s = (x2 - x1) / M act_q1 = np.abs(x2[0] - x1[0]) act_q2 = np.abs(x2[1] - x1[1]) if act_q1 <= 4 or act_q2 <= 4: for k in np.arange(z * M, (z + 1) * M - 1, 1): i = k % (z * M) + 1 #p1_y_prd[k] = x1 + s * i p1_y_prd[k] = x2 #print('test : ', x1, x2, p1_y_prd[k]) #Error_VMresult[k] = Error_VMresult[((z + 1) * M) - 1] # for z in np.arange(15, 40, 1): # if p1_mape_Queue[z] >= 10: # for k in np.arange(z * M, (z + 1) * M - 1): # Error_VMresult[k] = Error_VMresult[((z + 1) * M) - 1] np.savetxt("output/Error_VMresult_OK.csv", p1_y_prd, delimiter=",", fmt="%.4f") fwc_p2_act = VM_Process2_시뮬레이터(A_p2, d_p2, C_p2, F_p2, v1_PLS, p1_y_prd, p1_y_act, SEED2) fwc_p2_act.DoE_Run(lamda_PLS=v2_PLS, Z=Z_DoE, M=M, f=o_y_act) # DoE Run ACT값으로 가능 p2_VM_Output, p2_ACT_Output, p2_ez_run, p2_y_act, p2_y_prd = fwc_p2_act.VM_Run( lamda_PLS=v2_PLS, Z=Z_VM, M=M) fdh_graph.plt_show1(Z_VM * M, p2_y_act[:, 1:2], p2_y_prd[:, 1:2]) fdh_graph.plt_show2(Z_VM, p2_ez_run[:, 0:1], p2_ez_run[:, 1:2], Noise=True) p2_q2_mape_Queue = [] for i in np.arange(Nz_RUN * M, Z_VM * M, 1): mape = fdh_graph.mean_absolute_percentage_error( i + 1, p2_y_act[i][1], p2_y_prd[i][1]) p2_q2_mape_Queue.append(mape) print('Process-2 q2 All MAPE After 15 Lot : {0:.2f}%'.format( np.mean(p2_q2_mape_Queue))) # metrology 마다 보여주는 MAPE 값이 의미가 없다. for z in np.arange(Nz_RUN, Z_VM, 1): mape = fdh_graph.mean_absolute_percentage_error( z + 1, p2_y_act[((z + 1) * M) - 1][1], p2_y_prd[((z + 1) * M) - 1][1]) p2_q2_mape_Queue.append(mape) print('Process-2 q2 Every Metrology MAPE After 15 Lot : {0:.2f}%'.format( np.mean(p2_q2_mape_Queue))) p2_q2_mape_Queue = []
def main(): fdh_graph = FDC_Graph() noise_ez_run = np.loadtxt('output/noise_ez_run.csv', delimiter=",", dtype=np.float32) fwc_p1_vm = VM_Process1_DynamicSampling_노이즈시뮬레이터(A_p1, d_p1, C_p1, dM, dStart, SEED) fwc_p1_vm.DoE_Run(lamda_PLS=v_PLS, Z=Z_DoE, M=M) #DoE Run VM_Output, ACT_Output, ez_run, y_act, y_prd, abnormal_p1_ez_all_run_q1 = fwc_p1_vm.VM_Run( lamda_PLS=v_PLS, Z=RUNS_CNT, M=M) # np.savetxt("output/VM_Output.csv", VM_Output, delimiter=",", fmt="%.4f") # np.savetxt("output/ACT_Output.csv", ACT_Output, delimiter=",", fmt="%.4f") # np.savetxt("output/ez_run.csv", ez_run, delimiter=",", fmt="%.4f") # np.savetxt("output/y_act.csv", y_act, delimiter=",", fmt="%.4f") # np.savetxt("output/y_prd.csv", y_prd, delimiter=",", fmt="%.4f") fdh_graph.plt_show1( N, y_act[:, 0:1], y_prd[:, 0:1], 'Process-1 Dynamic Sampling Case (' + str(RUNS_CNT) + ' Metrology Runs)', '1') #fdh_graph.plt_show2(RUNS_CNT, ez_run[:, 0:1], ez_run[:, 1:2], Noise=True) ds_ez_run_out = [] noise_ez_run_out = [] runM = M noise_ez_run_out.append(np.array([0, 0])) for z in np.arange(1, old_N + 1): for k in np.arange(z * M, (z + 1) * M): noise_ez_run_out.append(noise_ez_run[z]) noise_ez_run_out = np.array(noise_ez_run_out) ds_ez_run_out.append(np.array([0, 0])) for z in np.arange(1, RUNS_CNT + 1): if z == dStart: runM = dM for k in np.arange(z * runM, (z + 1) * runM): ds_ez_run_out.append(ez_run[z]) ez_run_out = np.array(ds_ez_run_out) #np.savetxt("output/ez_run2.csv", ez_run_out, delimiter=",", fmt="%.4f") #fdh_graph.plt_show5_1(noise_ez_run_out, ez_run_out, N, M, dM, S1, type=1) #60 Metrology Runs fdh_graph.plt_show5_1(noise_ez_run_out, ez_run_out, N, M, dM, S1, type=2) # 100 Metrology Runs # p1_q1_mape_Queue = [] # #metrology 마다 보여주는 MAPE 값이 의미가 없다. ==> 로직 고쳐야 함.. 40 runs가 아니라 60 Runs, 80 Runs 변경 계산 필요 # for z in np.arange(Nz_RUN, old_N, 1): # mape = fdh_graph.mean_absolute_percentage_error(z + 1, y_act[((z + 1) * M) - 1][0], y_prd[((z + 1) * M) - 1][0]) # p1_q1_mape_Queue.append(mape) # # print('Process-1 q1 Every Metrology MAPE After 15 Lot : {0:.2f}%'.format(np.mean(p1_q1_mape_Queue))) p1_q1_mape_Queue = [] for i in np.arange(S1 * M, N, 1): mape = fdh_graph.mean_absolute_percentage_error( i + 1, y_act[i][0], y_prd[i][0]) p1_q1_mape_Queue.append(mape) print('Process-1 q1 All MAPE After 20 Lot : {0:.2f}%'.format( np.mean(p1_q1_mape_Queue)))
def main(): fdh_graph = FDC_Graph() fwc_p1_vm = VM_Process1_시뮬레이터(A_p1, d_p1, C_p1, SEED) fwc_p1_vm.DoE_Run(lamda_PLS=v1_PLS, Z=Z_DoE, M=M) # DoE Run Normal_VMResult, Normal_ACTResult, ez_run, o_y_act, o_y_prd = fwc_p1_vm.VM_Run( lamda_PLS=v1_PLS, Z=Z_VM, M=M) fwc_p1_vm = VM_Process1_노이즈시뮬레이터(A_p1, d_p1, C_p1, SEED) fwc_p1_vm.DoE_Run(lamda_PLS=v1_PLS, Z=Z_DoE, M=M) # DoE Run Error_VMresult, Error_ACTResult, ez_run, p1_y_act, p1_y_prd = fwc_p1_vm.VM_Run( lamda_PLS=v1_PLS, Z=Z_VM, M=M) # fdh_graph.plt_show1(Z_VM * M, p1_y_act[:, 0:1], p1_y_prd[:, 0:1]) # fdh_graph.plt_show2(Z_VM, ez_run[:, 0:1], ez_run[:, 1:2]) p1_q1_mape_Queue = [] # metrology 마다 보여주는 MAPE 값이 의미가 없다. for z in np.arange(Nz_RUN, Z_VM, 1): mape = fdh_graph.mean_absolute_percentage_error( z + 1, p1_y_act[((z + 1) * M) - 1][0], p1_y_prd[((z + 1) * M) - 1][0]) p1_q1_mape_Queue.append(mape) print('Process-1 q1 Every Metrology MAPE After 15 Lot : {0:.2f}%'.format( np.mean(p1_q1_mape_Queue))) p1_q1_mape_Queue = [] for i in np.arange(Nz_RUN * M, Z_VM * M, 1): mape = fdh_graph.mean_absolute_percentage_error( i + 1, p1_y_act[i][0], p1_y_prd[i][0]) p1_q1_mape_Queue.append(mape) print('Process-1 q1 All MAPE After 15 Lot : {0:.2f}%'.format( np.mean(p1_q1_mape_Queue))) np.savetxt("output/p1_mape.csv", p1_q1_mape_Queue, delimiter=",", fmt="%.4f") np.savetxt("output/Error_VMresult1.csv", Error_VMresult, delimiter=",", fmt="%.4f") np.savetxt("output/p1_y_prd.csv", p1_y_prd, delimiter=",", fmt="%.4f") np.savetxt("output/p1_y_act.csv", p1_y_act, delimiter=",", fmt="%.4f") np.savetxt("output/Error_ACTResult.csv", Error_ACTResult, delimiter=",", fmt="%.4f") fwc_p2_act = VM_Process2_시뮬레이터(A_p2, d_p2, C_p2, F_p2, v1_PLS, p1_y_prd, p1_y_act, SEED) fwc_p2_act.DoE_Run(lamda_PLS=v2_PLS, Z=Z_DoE, M=M, f=o_y_act) # DoE Run ACT값으로 가능 p2_VM_Output, p2_ACT_Output, p2_ez_run, p2_y_act, p2_y_prd = fwc_p2_act.VM_Run( lamda_PLS=v2_PLS, Z=Z_VM, M=M) fdh_graph.plt_show1(Z_VM * M, p2_y_act[:, 1:2], p2_y_prd[:, 1:2]) fdh_graph.plt_show2(Z_VM, p2_ez_run[:, 0:1], p2_ez_run[:, 1:2]) p2_q2_mape_Queue = [] # metrology 마다 보여주는 MAPE 값이 의미가 없다. for z in np.arange(Nz_RUN, Z_VM, 1): mape = fdh_graph.mean_absolute_percentage_error( z + 1, p2_y_act[((z + 1) * M) - 1][1], p2_y_prd[((z + 1) * M) - 1][1]) #print("으아아악 : ", p2_y_act[((z + 1) * M) - 1][1], p2_y_prd[((z + 1) * M) - 1][1]) p2_q2_mape_Queue.append(mape) print('Process-2 q2 Every Metrology MAPE After 15 Lot : {0:.2f}%'.format( np.mean(p2_q2_mape_Queue))) p2_q2_mape_Queue = [] for i in np.arange(Nz_RUN * M, Z_VM * M, 1): mape = fdh_graph.mean_absolute_percentage_error( i + 1, p2_y_act[i][1], p2_y_prd[i][1]) p2_q2_mape_Queue.append(mape) print('Process-2 q2 All MAPE After 15 Lot : {0:.2f}%'.format( np.mean(p2_q2_mape_Queue))) np.savetxt("output/p2_mape.csv", p2_q2_mape_Queue, delimiter=",", fmt="%.4f") np.savetxt("output/p2_ACT_Output.csv", Error_VMresult, delimiter=",", fmt="%.4f") np.savetxt("output/p1_y_prd.csv", p2_y_prd, delimiter=",", fmt="%.4f") np.savetxt("output/p1_y_act.csv", p2_y_act, delimiter=",", fmt="%.4f") np.savetxt("output/p2_ACT_Output.csv", Error_ACTResult, delimiter=",", fmt="%.4f")
def main(): fdh_graph = FDC_Graph() fwc_p1_vm = VM_Process1_시뮬레이터(A_p1, d_p1, C_p1, SEED1) fwc_p1_vm.DoE_Run(lamda_PLS=v1_PLS, Z=Z_DoE, M=M) # DoE Run Normal_VMResult, Normal_ACTResult, ez_run, o_y_act, o_y_prd, _ = fwc_p1_vm.VM_Run( lamda_PLS=v1_PLS, Z=Z_VM, M=M) fwc_p1_vm = VM_Process1_노이즈시뮬레이터(A_p1, d_p1, C_p1, SEED1) fwc_p1_vm.DoE_Run(lamda_PLS=v1_PLS, Z=Z_DoE, M=M) # DoE Run Error_VMresult, Error_ACTResult, ez_run, p1_y_act, p1_y_prd, _ = fwc_p1_vm.VM_Run( lamda_PLS=v1_PLS, Z=Z_VM, M=M) # fdh_graph.plt_show1(Z_VM * M, p1_y_act[:, 0:1], p1_y_prd[:, 0:1]) # fdh_graph.plt_show2(Z_VM, ez_run[:, 0:1], ez_run[:, 1:2]) p1_q1_mape_Queue = [] # metrology 마다 보여주는 MAPE 값이 의미가 없다. for z in np.arange(Nz_RUN, Z_VM, 1): mape = fdh_graph.mean_absolute_percentage_error( z + 1, p1_y_act[((z + 1) * M) - 1][0], p1_y_prd[((z + 1) * M) - 1][0]) p1_q1_mape_Queue.append(mape) print('Process-1 q1 Every Metrology MAPE After 15 Lot : {0:.2f}%'.format( np.mean(p1_q1_mape_Queue))) p1_q1_mape_Queue = [] for i in np.arange(Nz_RUN * M, Z_VM * M, 1): mape = fdh_graph.mean_absolute_percentage_error( i + 1, p1_y_act[i][0], p1_y_prd[i][0]) p1_q1_mape_Queue.append(mape) print('Process-1 q1 All MAPE After 15 Lot : {0:.2f}%'.format( np.mean(p1_q1_mape_Queue))) p1_q1_mape_Queue = [] for z in np.arange(0, Z_VM, 1): mape = fdh_graph.mean_absolute_percentage_error( z + 1, p1_y_act[((z + 1) * M) - 1][0], p1_y_prd[((z + 1) * M) - 1][0]) p1_q1_mape_Queue.append(mape) for z in np.arange(Nz_RUN, Z_VM, 1): if p1_q1_mape_Queue[z] >= Upstream_Rule_MAPE: x1 = p1_y_act[(z * M) - 1] x2 = p1_y_act[((z + 1) * M) - 1] s = (x2 - x1) / M for k in np.arange(z * M, (z + 1) * M - 1, 1): i = k % (z * M) + 1 p1_y_prd[k] = x1 + s * i # np.savetxt("output/p1_mape.csv", p1_q1_mape_Queue, delimiter=",", fmt="%.4f") # np.savetxt("output/Error_VMresult1.csv", Error_VMresult, delimiter=",", fmt="%.4f") # np.savetxt("output/p1_y_prd.csv", p1_y_prd, delimiter=",", fmt="%.4f") # np.savetxt("output/p1_y_act.csv", p1_y_act, delimiter=",", fmt="%.4f") # np.savetxt("output/Error_ACTResult.csv", Error_ACTResult, delimiter=",", fmt="%.4f") max_mape = 0 min_mape = 1000000000000 t = 0 for m in range(1000): SEED2 = t + m fwc_p2_act = VM_Process2_시뮬레이터(A_p2, d_p2, C_p2, F_p2, v1_PLS, p1_y_prd, p1_y_act, SEED2) fwc_p2_act.DoE_Run(lamda_PLS=v2_PLS, Z=Z_DoE, M=M, f=o_y_act) # DoE Run ACT값으로 가능 p2_VM_Output, p2_ACT_Output, p2_ez_run, p2_y_act, p2_y_prd, _ = fwc_p2_act.VM_Run( lamda_PLS=v2_PLS, Z=Z_VM, M=M) p2_q2_mape_Queue = [] for i in np.arange(Nz_RUN * M, Z_VM * M, 1): mape = fdh_graph.mean_absolute_percentage_error( i + 1, p2_y_act[i][1], p2_y_prd[i][1]) p2_q2_mape_Queue.append(mape) mape = np.mean(p2_q2_mape_Queue) print('SEED2 : ', SEED2, 'Process-2 q2 All MAPE After 15 Lot : {0:.2f}%'.format(mape)) if mape > max_mape: max_mape = mape seed_right = SEED2 print('SEED2 : ', SEED2, ' , max_mape = ', max_mape) if mape < min_mape: min_mape = mape seed_right1 = SEED2 print('SEED2 : ', SEED2, ' , min_mape = ', min_mape) print('seed_right : ', seed_right, ' , max_mape = ', max_mape) print('seed_right1 : ', seed_right1, ' , min_mape = ', min_mape)
def main(): fdh_graph = FDC_Graph() fwc_p1_vm = VM_Process1_시뮬레이터(A_p1, d_p1, C_p1, SEED1) fwc_p1_vm.DoE_Run(lamda_PLS=v1_PLS, Z=Z_DoE, M=M) # DoE Run Normal_VMResult, Normal_ACTResult, ez_run, o_y_act, o_y_prd = fwc_p1_vm.VM_Run(lamda_PLS=v1_PLS, Z=Z_VM, M=M) fwc_p1_vm = VM_Process1_노이즈시뮬레이터(A_p1, d_p1, C_p1, SEED1) fwc_p1_vm.DoE_Run(lamda_PLS=v1_PLS, Z=Z_DoE, M=M) # DoE Run Error_VMresult, Error_ACTResult, ez_run, p1_y_act, p1_y_prd = fwc_p1_vm.VM_Run(lamda_PLS=v1_PLS, Z=Z_VM, M=M) np.savetxt("output/ez_run.csv", ez_run, delimiter=",", fmt="%.4f") # fdh_graph.plt_show1(Z_VM * M, p1_y_act[:, 0:1], p1_y_prd[:, 0:1]) # fdh_graph.plt_show2(Z_VM, ez_run[:, 0:1], ez_run[:, 1:2], Noise=True) p1_q1_mape_Queue = [] # metrology 마다 보여주는 MAPE 값이 의미가 없다. for z in np.arange(Nz_RUN_1, Z_VM, 1): mape = fdh_graph.mean_absolute_percentage_error(z + 1, p1_y_act[((z + 1) * M) - 1][0], p1_y_prd[((z + 1) * M) - 1][0]) p1_q1_mape_Queue.append(mape) print('Process-1 q1 Every Metrology MAPE After 15 Lot : {0:.2f}%'.format(np.mean(p1_q1_mape_Queue))) np.savetxt("output/p1_mape.csv", p1_q1_mape_Queue, delimiter=",", fmt="%.4f") np.savetxt("output/Error_VMresult1.csv", Error_VMresult, delimiter=",", fmt="%.4f") np.savetxt("output/p1_y_prd.csv", p1_y_prd, delimiter=",", fmt="%.4f") np.savetxt("output/p1_y_act.csv", p1_y_act, delimiter=",", fmt="%.4f") np.savetxt("output/Error_ACTResult.csv", Error_ACTResult, delimiter=",", fmt="%.4f") p1_q1_mape_Queue = [] for i in np.arange(Nz_RUN_1 * M, Z_VM * M, 1): mape = fdh_graph.mean_absolute_percentage_error(i + 1, p1_y_act[i][0], p1_y_prd[i][0]) p1_q1_mape_Queue.append(mape) #print('Process-1 q1 All MAPE After 20 Lot : {0:.2f}%'.format(np.mean(p1_q1_mape_Queue))) print('Process-1 q1 All MAPE After 15 Lot : {0:.2f}%'.format(np.mean(p1_q1_mape_Queue))) # fdh_graph.plt_show1(Z_VM * M, p2_y_act[:, 1:2], p2_y_prd[:, 1:2]) # fdh_graph.plt_show2(Z_VM, p2_ez_run[:, 0:1], p2_ez_run[:, 1:2], Noise=False) max_mape = 0 t = 0 for m in range(1000): SEED2 = t + m fwc_p2_act = VM_Process2_노이즈시뮬레이터(A_p2, d_p2, C_p2, F_p2, v1_PLS, p1_y_prd, p1_y_act, SEED2) fwc_p2_act.DoE_Run(lamda_PLS=v2_PLS, Z=Z_DoE, M=M, f=o_y_act) # DoE Run ACT값으로 가능 p2_VM_Output, p2_ACT_Output, p2_ez_run, p2_y_act, p2_y_prd = fwc_p2_act.VM_Run(lamda_PLS=v2_PLS, Z=Z_VM, M=M) p2_q2_mape_Queue = [] for i in np.arange(Nz_RUN_2 * M, Z_VM * M, 1): mape = fdh_graph.mean_absolute_percentage_error(i + 1, p2_y_act[i][1], p2_y_prd[i][1]) p2_q2_mape_Queue.append(mape) mape = np.mean(p2_q2_mape_Queue) print('Process-2 q2 All MAPE After 20 Lot : {0:.2f}%'.format(mape)) if mape > max_mape: max_mape = mape seed_right = SEED2 print('SEED2 : ', SEED2, ' , max_mape = ', max_mape) print('seed_right : ', seed_right, ' , max_mape = ', max_mape)
def main(): noise_ez_run = np.loadtxt('output/noise_ez_run.csv', delimiter=",", dtype=np.float32) reactive_p2_ez_all_run_q2 = np.loadtxt( 'D:/10. 대학원/04. Source/09. VM_Source/04. VMOnly/output/reactive_p2_ez_all_run_q2.csv', delimiter=",", dtype=np.float32) after_normal_p2_ez_all_run_q2 = np.loadtxt( 'D:/10. 대학원/04. Source/09. VM_Source/04. VMOnly/output/after_normal_p2_ez_all_run_q2.csv', delimiter=",", dtype=np.float32) fdh_graph = FDC_Graph() fwc_p1_vm = VM_Process1_시뮬레이터(A_p1, d_p1, C_p1, SEED1) fwc_p1_vm.DoE_Run(lamda_PLS=v1_PLS, Z=Z_DoE, M=M) # DoE Run Normal_VMResult, Normal_ACTResult, ez_run, o_y_act, o_y_prd, _ = fwc_p1_vm.VM_Run( lamda_PLS=v1_PLS, Z=Z_VM, M=M) fwc_p1_vm = VM_Process1_DynamicSampling_노이즈시뮬레이터(A_p1, d_p1, C_p1, dM, dStart, SEED1) fwc_p1_vm.DoE_Run(lamda_PLS=v_PLS, Z=Z_DoE, M=M) # DoE Run VM_Output, ACT_Output, ez_run, p1_y_act, p1_y_prd, p1_ez_all_run_q1 = fwc_p1_vm.VM_Run( lamda_PLS=v_PLS, Z=RUNS_CNT, M=M) #fdh_graph.plt_show1(Z_VM * M, p1_y_act[:, 0:1], p1_y_prd[:, 0:1]) ez_run_out = [] noise_ez_run_out = [] runM = M noise_ez_run_out.append(np.array([0, 0])) for z in np.arange(1, old_N + 1): for k in np.arange(z * M, (z + 1) * M): noise_ez_run_out.append(noise_ez_run[z]) noise_ez_run_out = np.array(noise_ez_run_out) ez_run_out.append(np.array([0, 0])) for z in np.arange(1, RUNS_CNT + 1): if z == dStart: runM = dM for k in np.arange(z * runM, (z + 1) * runM): ez_run_out.append(ez_run[z]) ez_run_out = np.array(ez_run_out) #fdh_graph.plt_show5(ez_run_out, N, M, dM, S1, Noise=True) ##fdh_graph.plt_show5_1(noise_ez_run_out, ez_run_out, N, M, dM, S1, type=1) # np.savetxt("output/Error_VMresult2.csv", VM_Output, delimiter=",", fmt="%.4f") # np.savetxt("output/Error_ACTResult2.csv", ACT_Output, delimiter=",", fmt="%.4f") # for z in np.arange(21, 32, 1): # for k in np.arange(z * M, (z + 1) * M): # Error_VMresult[k] = Error_VMresult[((z + 1) * M) - 1] p1_q1_mape_Queue = [] # metrology 마다 보여주는 MAPE 값이 의미가 없다. for z in np.arange(Nz_RUN, Z_VM, 1): mape = fdh_graph.mean_absolute_percentage_error( z + 1, p1_y_act[((z + 1) * M) - 1][0], p1_y_prd[((z + 1) * M) - 1][0]) p1_q1_mape_Queue.append(mape) print('Process-1 q1 Every Metrology MAPE After 15 Lot : {0:.2f}%'.format( np.mean(p1_q1_mape_Queue))) p1_q1_mape_Queue = [] for i in np.arange(Nz_RUN * M, Z_VM * M, 1): mape = fdh_graph.mean_absolute_percentage_error( i + 1, p1_y_act[i][0], p1_y_prd[i][0]) p1_q1_mape_Queue.append(mape) print('Process-1 q1 All MAPE After 15 Lot : {0:.2f}%'.format( np.mean(p1_q1_mape_Queue))) p1_q1_mape_Queue = [] for z in np.arange(0, Z_VM, 1): mape = fdh_graph.mean_absolute_percentage_error( z + 1, p1_y_act[((z + 1) * M) - 1][0], p1_y_prd[((z + 1) * M) - 1][0]) p1_q1_mape_Queue.append(mape) # np.savetxt("output/p1_mape.csv", p1_q1_mape_Queue, delimiter=",", fmt="%.4f") # np.savetxt("output/Error_VMresult1.csv", VM_Output, delimiter=",", fmt="%.4f") # np.savetxt("output/p1_y_prd.csv", p1_y_prd, delimiter=",", fmt="%.4f") # np.savetxt("output/p1_y_act.csv", p1_y_act, delimiter=",", fmt="%.4f") # np.savetxt("output/Error_ACTResult.csv", ACT_Output, delimiter=",", fmt="%.4f") for z in np.arange(Nz_RUN, Z_VM, 1): if p1_q1_mape_Queue[z] >= Upstream_Rule_MAPE: x1 = p1_y_act[(z * M) - 1] x2 = p1_y_act[((z + 1) * M) - 1] s = (x2 - x1) / M # act_q1 = np.abs(x2[0] - x1[0]) # act_q2 = np.abs(x2[1] - x1[1]) # if act_q1 <= 4 or act_q2 <= 4: for k in np.arange(z * M, (z + 1) * M - 1, 1): i = k % (z * M) + 1 p1_y_prd[k] = x1 + s * i #p1_y_prd[k] = x2 #print('test : ', x1, x2, p1_y_prd[k]) #Error_VMresult[k] = Error_VMresult[((z + 1) * M) - 1] # for z in np.arange(15, 40, 1): # if p1_mape_Queue[z] >= 10: # for k in np.arange(z * M, (z + 1) * M - 1): # Error_VMresult[k] = Error_VMresult[((z + 1) * M) - 1] np.savetxt("output/Error_VMresult_OK.csv", p1_y_prd, delimiter=",", fmt="%.4f") fwc_p2_act = VM_Process2_시뮬레이터(A_p2, d_p2, C_p2, F_p2, v1_PLS, p1_y_prd, p1_y_act, SEED2) fwc_p2_act.DoE_Run(lamda_PLS=v2_PLS, Z=Z_DoE, M=M, f=o_y_act) # DoE Run ACT값으로 가능 p2_VM_Output, p2_ACT_Output, p2_ez_run, p2_y_act, p2_y_prd, p2_ez_all_run_q2 = fwc_p2_act.VM_Run( lamda_PLS=v2_PLS, Z=Z_VM, M=M) #fdh_graph.plt_show1(Z_VM * M, p2_y_act[:, 1:2], p2_y_prd[:, 1:2]) #fdh_graph.plt_show2(Z_VM, p2_ez_run[:, 0:1], p2_ez_run[:, 1:2], Noise=True) fdh_graph.plt_show1( Z_VM * M, p2_y_act[:, 1:2], p2_y_prd[:, 1:2], 'Process-2 UpStream Rule Case with Process-1 Dynamic Sampling', '2') fdh_graph.plt_show2_4( Z_VM * M, reactive_p2_ez_all_run_q2[:, 1:2], p2_ez_all_run_q2[:, 1:2], 'Process-2 UPStream Rule X with Process-1 Dynamic Sampling', '2', color1='bx-', color2='rx--') p2_q2_mape_Queue = [] for i in np.arange(Nz_RUN * M, Z_VM * M, 1): mape = fdh_graph.mean_absolute_percentage_error( i + 1, p2_y_act[i][1], p2_y_prd[i][1]) p2_q2_mape_Queue.append(mape) print('Process-2 q2 All MAPE After 15 Lot : {0:.2f}%'.format( np.mean(p2_q2_mape_Queue))) # metrology 마다 보여주는 MAPE 값이 의미가 없다. for z in np.arange(Nz_RUN, Z_VM, 1): mape = fdh_graph.mean_absolute_percentage_error( z + 1, p2_y_act[((z + 1) * M) - 1][1], p2_y_prd[((z + 1) * M) - 1][1]) p2_q2_mape_Queue.append(mape) print('Process-2 q2 Every Metrology MAPE After 15 Lot : {0:.2f}%'.format( np.mean(p2_q2_mape_Queue))) p2_q2_mape_Queue = []