Exemple #1
0
def schema_for_column(c):
    '''Returns the Schema object for the given Column.'''
    data_type = c.data_type.lower()
    column_type = c.column_type.lower()

    inclusion = 'available'
    # We want to automatically include all primary key columns
    if c.column_key.lower() == 'pri':
        inclusion = 'automatic'

    result = Schema(inclusion=inclusion)

    if data_type == 'bit' or column_type.startswith('tinyint(1)'):
        result.type = ['null', 'boolean']

    elif data_type in BYTES_FOR_INTEGER_TYPE:
        result.type = ['null', 'integer']
        bits = BYTES_FOR_INTEGER_TYPE[data_type] * 8
        if 'unsigned' in c.column_type:
            result.minimum = 0
            result.maximum = 2**bits - 1
        else:
            result.minimum = 0 - 2**(bits - 1)
            result.maximum = 2**(bits - 1) - 1

    elif data_type in FLOAT_TYPES:
        result.type = ['null', 'number']

    elif data_type == 'decimal':
        result.type = ['null', 'number']
        result.exclusiveMaximum = True
        result.maximum = 10**(c.numeric_precision - c.numeric_scale)
        result.multipleOf = 10**(0 - c.numeric_scale)
        if 'unsigned' in column_type:
            result.minimum = 0
        else:
            result.exclusiveMinimum = True
            result.minimum = -10**(c.numeric_precision - c.numeric_scale)
        return result

    elif data_type in STRING_TYPES:
        result.type = ['null', 'string']
        result.maxLength = c.character_maximum_length

    elif data_type in DATETIME_TYPES:
        result.type = ['null', 'string']
        result.format = 'date-time'

    else:
        result = Schema(
            None,
            inclusion='unsupported',
            description='Unsupported column type {}'.format(column_type))
    return result
Exemple #2
0
def schema_for_column(c):
    data_type = c.sql_data_type.lower()
    result = Schema()

    if data_type in INTEGER_TYPES:
        result.type = nullable_column('integer', c.is_primary_key)
        result.minimum = -1 * (2**(c.numeric_precision - 1))
        result.maximum = 2**(c.numeric_precision - 1) - 1
        return result

    elif data_type == 'bit' and c.character_maximum_length == 1:
        result.type = nullable_column('boolean', c.is_primary_key)
        return result

    elif data_type == 'boolean':
        result.type = nullable_column('boolean', c.is_primary_key)
        return result

    elif data_type == 'uuid':
        result.type = nullable_column('string', c.is_primary_key)
        return result

    elif data_type == 'hstore':
        result.type = nullable_column('string', c.is_primary_key)
        return result

    elif data_type == 'citext':
        result.type = nullable_column('string', c.is_primary_key)
        return result

    elif data_type in JSON_TYPES:
        result.type = nullable_column('string', c.is_primary_key)
        return result

    elif data_type == 'numeric':
        result.type = nullable_column('number', c.is_primary_key)
        if c.numeric_scale is None or c.numeric_scale > MAX_SCALE:
            LOGGER.warning(
                'capping decimal scale to 38.  THIS MAY CAUSE TRUNCATION')
            scale = MAX_SCALE
        else:
            scale = c.numeric_scale

        if c.numeric_precision is None or c.numeric_precision > MAX_PRECISION:
            LOGGER.warning(
                'capping decimal precision to 100.  THIS MAY CAUSE TRUNCATION')
            precision = MAX_PRECISION
        else:
            precision = c.numeric_precision

        result.exclusiveMaximum = True
        result.maximum = 10**(precision - scale)
        result.multipleOf = 10**(0 - scale)
        result.exclusiveMinimum = True
        result.minimum = -10**(precision - scale)
        return result

    elif data_type in {'time without time zone', 'time with time zone'}:
        #times are treated as ordinary strings as they can not possible match RFC3339
        result.type = nullable_column('string', c.is_primary_key)
        return result

    elif data_type in ('date', 'timestamp without time zone',
                       'timestamp with time zone'):
        result.type = nullable_column('string', c.is_primary_key)

        result.format = 'date-time'
        return result

    elif data_type in FLOAT_TYPES:
        result.type = nullable_column('number', c.is_primary_key)
        return result

    elif data_type == 'text':
        result.type = nullable_column('string', c.is_primary_key)
        return result

    elif data_type == 'character varying':
        result.type = nullable_column('string', c.is_primary_key)
        result.maxLength = c.character_maximum_length
        return result

    elif data_type == 'character':
        result.type = nullable_column('string', c.is_primary_key)
        result.maxLength = c.character_maximum_length
        return result

    return Schema(None)
Exemple #3
0
def schema_for_column(c, pks_for_table):
    data_type = c.data_type.lower()
    result = Schema()

    numeric_scale = c.numeric_scale or DEFAULT_NUMERIC_SCALE
    numeric_precision = c.numeric_precision or DEFAULT_NUMERIC_PRECISION

    if data_type == 'number' and numeric_scale <= 0:
        result.type = nullable_column(c.column_name, 'integer', pks_for_table)
        result.minimum = -1 * (10**numeric_precision - 1)
        result.maximum = (10**numeric_precision - 1)

        if numeric_scale < 0:
            result.multipleOf = -10 * numeric_scale
        return result

    elif data_type == 'number':
        result.type = nullable_column(c.column_name, 'number', pks_for_table)

        result.exclusiveMaximum = True
        result.maximum = 10**(numeric_precision - numeric_scale)
        result.multipleOf = 10**(0 - numeric_scale)
        result.exclusiveMinimum = True
        result.minimum = -10**(numeric_precision - numeric_scale)
        return result

    elif data_type == 'date' or data_type.startswith("timestamp"):
        result.type = nullable_column(c.column_name, 'string', pks_for_table)

        result.format = 'date-time'
        return result

    elif data_type in FLOAT_TYPES:
        result.type = nullable_column(c.column_name, 'number', pks_for_table)
        return result

    elif data_type in STRING_TYPES:
        character_used = c.character_used
        result.type = nullable_column(c.column_name, 'string', pks_for_table)

        if character_used == 'C':
            result.maxLength = c.char_length
        return result

    #these column types are insane. they are NOT actually ieee754 floats
    #instead they are represented as decimals, but despite this
    #it appears we can say nothing about their max or min

    #"real"
    elif data_type == 'float' and c.numeric_precision == 63:
        result.type = nullable_column(c.column_name, 'number', pks_for_table)
        result.multipleOf = 10**-18
        return result

    #"float", "double_precision",
    elif data_type in ['float', 'double_precision']:

        result.type = nullable_column(c.column_name, 'number', pks_for_table)
        result.multipleOf = 10**-38
        return result

    return Schema(None)