save_path = '/data/lisatmp/chungjun/nips2015/timit/pkl/' batch_size = 64 frame_size = 200 main_lstm_dim = 2000 p_x_dim = 450 x2s_dim = 450 k = 20 target_size = frame_size * k lr = 1e-3 debug = 0 model = Model() train_data = TIMIT(name='train', path=data_path, frame_size=frame_size, shuffle=0, use_n_gram=1) X_mean = train_data.X_mean X_std = train_data.X_std valid_data = TIMIT(name='valid', path=data_path, frame_size=frame_size, shuffle=0, use_n_gram=1, X_mean=X_mean, X_std=X_std) init_W = InitCell('rand')
save_path = '/home/junyoung/repos/sk/cle/models/nips2015/timit/sample/' exp_path = '/home/junyoung/repos/sk/cle/models/nips2015/timit/pkl/' frame_size = 200 label_size = 200 # How many samples to generate batch_size = 1 num_sample = 10 debug = 1 exp_name = 'm7_cond_v2' save_name = 'm7_cond_v2_sample_' train_data = TIMIT(name='train', path=data_path, frame_size=frame_size, shuffle=0, use_n_gram=1) X_mean = train_data.X_mean X_std = train_data.X_std test_data = TIMIT(name='test', path=data_path, frame_size=frame_size, shuffle=0, use_n_gram=1, X_mean=X_mean, X_std=X_std) exp = unpickle(exp_path + exp_name + '_best.pkl')