Exemple #1
0
save_path = '/data/lisatmp/chungjun/nips2015/timit/pkl/'

batch_size = 64
frame_size = 200
main_lstm_dim = 2000
p_x_dim = 450
x2s_dim = 450
k = 20
target_size = frame_size * k
lr = 1e-3
debug = 0

model = Model()
train_data = TIMIT(name='train',
                   path=data_path,
                   frame_size=frame_size,
                   shuffle=0,
                   use_n_gram=1)

X_mean = train_data.X_mean
X_std = train_data.X_std

valid_data = TIMIT(name='valid',
                   path=data_path,
                   frame_size=frame_size,
                   shuffle=0,
                   use_n_gram=1,
                   X_mean=X_mean,
                   X_std=X_std)

init_W = InitCell('rand')
Exemple #2
0
save_path = '/home/junyoung/repos/sk/cle/models/nips2015/timit/sample/'
exp_path = '/home/junyoung/repos/sk/cle/models/nips2015/timit/pkl/'

frame_size = 200
label_size = 200
# How many samples to generate
batch_size = 1
num_sample = 10
debug = 1

exp_name = 'm7_cond_v2'
save_name = 'm7_cond_v2_sample_'

train_data = TIMIT(name='train',
                   path=data_path,
                   frame_size=frame_size,
                   shuffle=0,
                   use_n_gram=1)

X_mean = train_data.X_mean
X_std = train_data.X_std

test_data = TIMIT(name='test',
                  path=data_path,
                  frame_size=frame_size,
                  shuffle=0,
                  use_n_gram=1,
                  X_mean=X_mean,
                  X_std=X_std)

exp = unpickle(exp_path + exp_name + '_best.pkl')