def test_Caltech101(): dset = caltech.Caltech101() task = dset.img_classification_task(dtype='float32') tasks.assert_img_classification(*task, N=9144) X, y = task assert X[0].shape == (144, 145, 3) assert X[1].shape == (817, 656, 3) assert X[100].shape == (502, 388, 3) assert len(np.unique(y)) == 102 # number of categories ylist = y.tolist() counts = [ylist.count(z) for z in np.unique(ylist)] assert counts == counts_101 z = y.copy() z.sort() assert (y == z).all() assert (y[1:] != y[:-1]).nonzero()[0].tolist() == caltech_101_breaks
def test_Caltech101(): dset = caltech.Caltech101() task = dset.img_classification_task(dtype="float32") tasks.assert_img_classification(*task, N=9144) X, y = task assert X[0].shape == (144, 145, 3) assert X[1].shape == (817, 656, 3) assert X[100].shape == (502, 388, 3) assert len(np.unique(y)) == 102 # number of categories ylist = y.tolist() counts = [ylist.count(z) for z in np.unique(ylist)] assert counts == counts_101 z = y.copy() z.sort() assert (y == z).all() assert (y[1:] != y[:-1]).nonzero()[0].tolist() == caltech_101_breaks
def test_Caltech256(): dset = caltech.Caltech256() task = dset.img_classification_task(dtype='float32') tasks.assert_img_classification(*task)
def test_img_classification_task(): dset = lfw.Original() X, y = dset.img_classification_task(dtype='float32') tasks.assert_img_classification(X, y)
def test_Caltech256(): dset = caltech.Caltech256() task = dset.img_classification_task(dtype="float32") tasks.assert_img_classification(*task)