def run_gphh_with_settings(): domain: RCPSP = load_domain(get_complete_path("j301_1.sm")) training_domains = [ load_domain(get_complete_path("j301_2.sm")), load_domain(get_complete_path("j301_3.sm")), load_domain(get_complete_path("j301_4.sm")), load_domain(get_complete_path("j301_5.sm")), load_domain(get_complete_path("j301_6.sm")), load_domain(get_complete_path("j301_7.sm")), load_domain(get_complete_path("j301_8.sm")), load_domain(get_complete_path("j301_9.sm")), load_domain(get_complete_path("j301_10.sm")), ] domain.set_inplace_environment(False) state = domain.get_initial_state() set_feature = { FeatureEnum.EARLIEST_FINISH_DATE, FeatureEnum.EARLIEST_START_DATE, FeatureEnum.LATEST_FINISH_DATE, FeatureEnum.LATEST_START_DATE, FeatureEnum.PRECEDENCE_DONE, FeatureEnum.ALL_DESCENDANTS, FeatureEnum.RESSOURCE_AVG, } pset = PrimitiveSet("main", len(set_feature)) pset.addPrimitive(operator.add, 2) pset.addPrimitive(operator.sub, 2) pset.addPrimitive(operator.mul, 2) pset.addPrimitive(protected_div, 2) pset.addPrimitive(max_operator, 2) pset.addPrimitive(min_operator, 2) pset.addPrimitive(operator.neg, 1) params_gphh = ParametersGPHH( set_feature=set_feature, set_primitves=pset, tournament_ratio=0.25, pop_size=20, n_gen=20, min_tree_depth=1, max_tree_depth=5, crossover_rate=0.7, mutation_rate=0.1, base_policy_method=BasePolicyMethod.SGS_READY, delta_index_freedom=0, delta_time_freedom=0, deap_verbose=True, ) solver = GPHH( training_domains=training_domains, weight=-1, verbose=True, params_gphh=params_gphh, ) solver.solve(domain_factory=lambda: domain) states, actions, values = rollout_episode( domain=domain, max_steps=1000, solver=solver, from_memory=state, verbose=False, outcome_formatter=lambda o: f"{o.observation} - cost: {o.value.cost:.2f}", ) print("Cost :", sum([v.cost for v in values]))
def run_gphh(): import time n_runs = 1 makespans = [] domain: RCPSP = load_domain(file_path=get_complete_path("j601_1.sm")) training_domains_names = ["j601_" + str(i) + ".sm" for i in range(1, 11)] training_domains = [] for td in training_domains_names: training_domains.append(load_domain(file_path=get_complete_path(td))) runtimes = [] for i in range(n_runs): domain.set_inplace_environment(False) state = domain.get_initial_state() with open("cp_reference_permutations") as json_file: cp_reference_permutations = json.load(json_file) # with open('cp_reference_makespans') as json_file: # cp_reference_makespans = json.load(json_file) start = time.time() solver = GPHH( training_domains=training_domains, domain_model=training_domains[3], weight=-1, verbose=True, reference_permutations=cp_reference_permutations, # reference_makespans=cp_reference_makespans, training_domains_names=training_domains_names, params_gphh=ParametersGPHH.fast_test() # params_gphh=ParametersGPHH.default() ) solver.solve(domain_factory=lambda: domain) end = time.time() runtimes.append((end - start)) heuristic = solver.hof print("ttype:", solver.best_heuristic) folder = "./trained_gphh_heuristics" if not os.path.exists(folder): os.makedirs(folder) file = open(os.path.join(folder, "test_gphh_" + str(i) + ".pkl"), "wb") pickle.dump(dict(hof=heuristic), file) file.close() solver.set_domain(domain) states, actions, values = rollout_episode( domain=domain, max_steps=1000, solver=solver, from_memory=state, verbose=False, outcome_formatter=lambda o: f"{o.observation} - cost: {o.value.cost:.2f}", ) print("Cost :", sum([v.cost for v in values])) makespans.append(sum([v.cost for v in values])) print("makespans: ", makespans) print("runtimes: ", runtimes) print("runtime - mean: ", np.mean(runtimes))
def run_comparaison(): import random from skdecide.builders.discrete_optimization.rcpsp.rcpsp_parser import \ get_data_available import os files = get_data_available() all_single_mode = [os.path.basename(f) for f in files if "sm" in f] # training_cphh = ["j1201_"+str(i)+".sm" for i in range(2, 11)] training_cphh = ["j301_" + str(i) + ".sm" for i in range(1, 11)] # all_testing_domains_names = [f for f in all_single_mode # if not(any(g in f for g in training_cphh))] all_testing_domains_names = ["j1201_2.sm"] # all_testing_domains_names = ["j601_2.sm"] # all_testing_domains_names = random.sample(all_testing_domains_names, 1) # training_domains_names = [f for f in all_single_mode # if any(g in f for g in training_cphh)] training_domains_names = all_testing_domains_names domains_loaded = { domain_name: load_domain(domain_name) for domain_name in all_testing_domains_names } test_domain_names = all_testing_domains_names # test_domain_names = [test_domain_names[-1]] # test_domain_names = ["j1201_1.sm"] print('test_domain_names: ', test_domain_names) print('training_domains_names: ', training_domains_names) n_walks = 5 for td in training_domains_names: domains_loaded[td] = load_domain(td) all_results = {} for dom in test_domain_names: all_results[dom] = { 'random_walk': [], 'cp': [], 'cp_sgs': [], 'gphh': [], 'pile': [] } # RANDOM WALK for test_domain_str in test_domain_names: domain: RCPSP = domains_loaded[test_domain_str] domain.set_inplace_environment(False) n_walks = 5 for i in range(n_walks): state = domain.get_initial_state() solver = None states, actions, values = rollout_episode( domain=domain, max_steps=1000, solver=solver, from_memory=state, verbose=False, outcome_formatter=lambda o: f'{o.observation} - cost: {o.value.cost:.2f}') print("One random Walk complete") print("Cost :", sum([v.cost for v in values])) all_results[test_domain_str]['random_walk'].append( sum([v.cost for v in values])) print("All random Walk complete") # CP for test_domain_str in test_domain_names: domain: RCPSP = domains_loaded[test_domain_str] do_solver = SolvingMethod.CP domain.set_inplace_environment(False) state = domain.get_initial_state() solver = DOSolver(policy_method_params=PolicyMethodParams( base_policy_method=BasePolicyMethod.FOLLOW_GANTT, delta_index_freedom=0, delta_time_freedom=0), method=do_solver) solver.solve(domain_factory=lambda: domain) print(do_solver) states, actions, values = rollout_episode( domain=domain, solver=solver, from_memory=state, max_steps=500, verbose=False, outcome_formatter=lambda o: f'{o.observation} - cost: {o.value.cost:.2f}') print('Cost: ', sum([v.cost for v in values])) print("CP done") all_results[test_domain_str]['cp'].append(sum([v.cost for v in values])) # CP SGS for test_domain_str in test_domain_names: domain: RCPSP = domains_loaded[test_domain_str] do_solver = SolvingMethod.CP domain.set_inplace_environment(False) state = domain.get_initial_state() solver = DOSolver(policy_method_params=PolicyMethodParams( base_policy_method=BasePolicyMethod.SGS_STRICT, delta_index_freedom=0, delta_time_freedom=0), method=do_solver) solver.solve(domain_factory=lambda: domain) print(do_solver) states, actions, values = rollout_episode( domain=domain, solver=solver, from_memory=state, max_steps=500, verbose=False, outcome_formatter=lambda o: f'{o.observation} - cost: {o.value.cost:.2f}') print('Cost: ', sum([v.cost for v in values])) print("CP_SGS done") all_results[test_domain_str]['cp_sgs'].append( sum([v.cost for v in values])) # PILE for test_domain_str in test_domain_names: domain: RCPSP = domains_loaded[test_domain_str] do_solver = SolvingMethod.PILE domain.set_inplace_environment(False) state = domain.get_initial_state() solver = DOSolver(policy_method_params=PolicyMethodParams( base_policy_method=BasePolicyMethod.FOLLOW_GANTT, delta_index_freedom=0, delta_time_freedom=0), method=do_solver) solver.solve(domain_factory=lambda: domain) print(do_solver) states, actions, values = rollout_episode( domain=domain, solver=solver, from_memory=state, max_steps=500, verbose=False, outcome_formatter=lambda o: f'{o.observation} - cost: {o.value.cost:.2f}') print('Cost: ', sum([v.cost for v in values])) print("PILE done") all_results[test_domain_str]['pile'].append( sum([v.cost for v in values])) # GPHH domain: RCPSP = load_domain("j301_1.sm") training_domains = [ domains_loaded[training_domain] for training_domain in training_domains_names ] with open('cp_reference_permutations') as json_file: cp_reference_permutations = json.load(json_file) # with open('cp_reference_makespans') as json_file: # cp_reference_makespans = json.load(json_file) for i in range(n_walks): domain.set_inplace_environment(False) set_feature = { FeatureEnum.EARLIEST_FINISH_DATE, FeatureEnum.EARLIEST_START_DATE, FeatureEnum.LATEST_FINISH_DATE, FeatureEnum.LATEST_START_DATE, FeatureEnum.N_PREDECESSORS, FeatureEnum.N_SUCCESSORS, FeatureEnum.ALL_DESCENDANTS, FeatureEnum.RESSOURCE_REQUIRED, FeatureEnum.RESSOURCE_AVG, FeatureEnum.RESSOURCE_MAX, # FeatureEnum.RESSOURCE_MIN FeatureEnum.RESSOURCE_NZ_MIN } pset = PrimitiveSet("main", len(set_feature)) pset.addPrimitive(operator.add, 2) pset.addPrimitive(operator.sub, 2) pset.addPrimitive(operator.mul, 2) pset.addPrimitive(protected_div, 2) pset.addPrimitive(max_operator, 2) pset.addPrimitive(min_operator, 2) pset.addPrimitive(operator.neg, 1) # pset.addPrimitive(operator.pow, 2) params_gphh = ParametersGPHH( set_feature=set_feature, set_primitves=pset, tournament_ratio=0.2, pop_size=20, n_gen=7, min_tree_depth=1, max_tree_depth=3, crossover_rate=0.7, mutation_rate=0.3, base_policy_method=BasePolicyMethod.SGS_READY, delta_index_freedom=0, delta_time_freedom=0, deap_verbose=True, evaluation=EvaluationGPHH.SGS_DEVIATION, permutation_distance=PermutationDistance.KTD # permutation_distance = PermutationDistance.KTD_HAMMING ) solver = GPHH( training_domains=training_domains, weight=-1, verbose=False, reference_permutations=cp_reference_permutations, # reference_makespans=cp_reference_makespans, training_domains_names=training_domains_names, params_gphh=params_gphh) solver.solve(domain_factory=lambda: domain) for test_domain_str in test_domain_names: domain: RCPSP = domains_loaded[test_domain_str] domain.set_inplace_environment(False) state = domain.get_initial_state() solver.set_domain(domain) states, actions, values = rollout_episode( domain=domain, max_steps=1000, solver=solver, from_memory=state, verbose=False, outcome_formatter=lambda o: f'{o.observation} - cost: {o.value.cost:.2f}') print("One GPHH done") print("Best evolved heuristic: ", solver.best_heuristic) print('Cost: ', sum([v.cost for v in values])) all_results[test_domain_str]['gphh'].append( sum([v.cost for v in values])) print("All GPHH done") print('##### ALL RESULTS #####') for test_domain_str in test_domain_names: print(test_domain_str, ' :') for algo_key in all_results[test_domain_str].keys(): print('\t', algo_key, ': ') print('\t\t all runs:', all_results[test_domain_str][algo_key]) print('\t\t mean:', np.mean(all_results[test_domain_str][algo_key]))
def run_comparaison_stochastic(): import random from skdecide.hub.domain.rcpsp.rcpsp_sk import RCPSP, MSRCPSP, \ build_stochastic_from_deterministic, build_n_determinist_from_stochastic repeat_runs = 5 test_domain_names = [ "j301_1.sm", "j301_2.sm", "j301_3.sm", "j601_1.sm", "j601_2.sm", "j601_3.sm" ] all_results = {} for dom in test_domain_names: all_results[dom] = { 'random_walk': [], 'cp': [], 'cp_sgs': [], 'gphh': [], 'pile': [] } for original_domain_name in test_domain_names: original_domain: RCPSP = load_domain(original_domain_name) task_to_noise = set( random.sample(original_domain.get_tasks_ids(), len(original_domain.get_tasks_ids()))) stochastic_domain = build_stochastic_from_deterministic( original_domain, task_to_noise=task_to_noise) deterministic_domains = build_n_determinist_from_stochastic( stochastic_domain, nb_instance=6) training_domains = deterministic_domains[0:-1] training_domains_names = [None for i in range(len(training_domains))] test_domain = deterministic_domains[-1] print('training_domains:', training_domains) # RANDOM WALK domain: RCPSP = test_domain domain.set_inplace_environment(False) # random_walk_costs = [] for i in range(repeat_runs): state = domain.get_initial_state() solver = None states, actions, values = rollout_episode( domain=domain, max_steps=1000, solver=solver, from_memory=state, verbose=False, outcome_formatter=lambda o: f'{o.observation} - cost: {o.value.cost:.2f}') print("One random Walk complete") print("Cost :", sum([v.cost for v in values])) all_results[original_domain_name]['random_walk'].append( sum([v.cost for v in values])) print("All random Walk complete") # CP domain = test_domain do_solver = SolvingMethod.CP domain.set_inplace_environment(False) state = domain.get_initial_state() solver = DOSolver(policy_method_params=PolicyMethodParams( base_policy_method=BasePolicyMethod.FOLLOW_GANTT, delta_index_freedom=0, delta_time_freedom=0), method=do_solver) solver.solve(domain_factory=lambda: domain) print(do_solver) states, actions, values = rollout_episode( domain=domain, solver=solver, from_memory=state, max_steps=500, verbose=False, outcome_formatter=lambda o: f'{o.observation} - cost: {o.value.cost:.2f}') print('Cost: ', sum([v.cost for v in values])) print("CP done") all_results[original_domain_name]['cp'].append( sum([v.cost for v in values])) # CP SGS for train_dom in training_domains: do_solver = SolvingMethod.CP train_dom.set_inplace_environment(False) state = train_dom.get_initial_state() solver = DOSolver(policy_method_params=PolicyMethodParams( base_policy_method=BasePolicyMethod.SGS_STRICT, delta_index_freedom=0, delta_time_freedom=0), method=do_solver) solver.solve(domain_factory=lambda: train_dom) print(do_solver) domain: RCPSP = test_domain domain.set_inplace_environment(False) states, actions, values = rollout_episode( domain=domain, solver=solver, from_memory=state, max_steps=500, verbose=False, outcome_formatter=lambda o: f'{o.observation} - cost: {o.value.cost:.2f}') print('Cost: ', sum([v.cost for v in values])) print("CP_SGS done") all_results[original_domain_name]['cp_sgs'].append( sum([v.cost for v in values])) #PILE domain: RCPSP = test_domain do_solver = SolvingMethod.PILE domain.set_inplace_environment(False) state = domain.get_initial_state() solver = DOSolver(policy_method_params=PolicyMethodParams( base_policy_method=BasePolicyMethod.FOLLOW_GANTT, delta_index_freedom=0, delta_time_freedom=0), method=do_solver) solver.solve(domain_factory=lambda: domain) print(do_solver) states, actions, values = rollout_episode( domain=domain, solver=solver, from_memory=state, max_steps=500, verbose=False, outcome_formatter=lambda o: f'{o.observation} - cost: {o.value.cost:.2f}') print('Cost: ', sum([v.cost for v in values])) print("PILE done") all_results[original_domain_name]['pile'].append( sum([v.cost for v in values])) # GPHH with open('cp_reference_permutations') as json_file: cp_reference_permutations = json.load(json_file) with open('cp_reference_makespans') as json_file: cp_reference_makespans = json.load(json_file) for i in range(repeat_runs): domain.set_inplace_environment(False) set_feature = { FeatureEnum.EARLIEST_FINISH_DATE, FeatureEnum.EARLIEST_START_DATE, FeatureEnum.LATEST_FINISH_DATE, FeatureEnum.LATEST_START_DATE, FeatureEnum.N_PREDECESSORS, FeatureEnum.N_SUCCESSORS, FeatureEnum.ALL_DESCENDANTS, FeatureEnum.RESSOURCE_REQUIRED, FeatureEnum.RESSOURCE_AVG, FeatureEnum.RESSOURCE_MAX, # FeatureEnum.RESSOURCE_MIN FeatureEnum.RESSOURCE_NZ_MIN } pset = PrimitiveSet("main", len(set_feature)) pset.addPrimitive(operator.add, 2) pset.addPrimitive(operator.sub, 2) pset.addPrimitive(operator.mul, 2) pset.addPrimitive(protected_div, 2) pset.addPrimitive(max_operator, 2) pset.addPrimitive(min_operator, 2) pset.addPrimitive(operator.neg, 1) # pset.addPrimitive(operator.pow, 2) params_gphh = ParametersGPHH( set_feature=set_feature, set_primitves=pset, tournament_ratio=0.2, pop_size=40, n_gen=20, min_tree_depth=1, max_tree_depth=3, crossover_rate=0.7, mutation_rate=0.3, base_policy_method=BasePolicyMethod.SGS_READY, delta_index_freedom=0, delta_time_freedom=0, deap_verbose=True, evaluation=EvaluationGPHH.SGS_DEVIATION, permutation_distance=PermutationDistance.KTD # permutation_distance = PermutationDistance.KTD_HAMMING ) solver = GPHH( training_domains=training_domains, weight=-1, verbose=False, reference_permutations=cp_reference_permutations, # reference_makespans=cp_reference_makespans, training_domains_names=training_domains_names, params_gphh=params_gphh # set_feature=set_feature) ) solver.solve(domain_factory=lambda: domain) domain: RCPSP = test_domain domain.set_inplace_environment(False) state = domain.get_initial_state() solver.set_domain(domain) states, actions, values = rollout_episode( domain=domain, max_steps=1000, solver=solver, from_memory=state, verbose=False, outcome_formatter=lambda o: f'{o.observation} - cost: {o.value.cost:.2f}') print("One GPHH done") print("Best evolved heuristic: ", solver.best_heuristic) print('Cost: ', sum([v.cost for v in values])) all_results[original_domain_name]['gphh'].append( sum([v.cost for v in values])) print('##### ALL RESULTS #####') for test_domain_str in test_domain_names: print(test_domain_str, ' :') for algo_key in all_results[test_domain_str].keys(): print('\t', algo_key, ': ') print('\t\t all runs:', all_results[test_domain_str][algo_key]) print('\t\t mean:', np.mean(all_results[test_domain_str][algo_key]))
def compare_settings(): test_domain_names = ["j1201_1.sm"] training_domains_names = ["j301_" + str(i) + ".sm" for i in range(2, 11)] domains_loaded = [] for td in training_domains_names: domains_loaded.append(load_domain(td)) n_walks = 5 all_settings = [] params1 = ParametersGPHH.default() params1.base_policy_method = BasePolicyMethod.SGS_PRECEDENCE all_settings.append(params1) params2 = ParametersGPHH.default() params2.base_policy_method = BasePolicyMethod.SGS_INDEX_FREEDOM params2.delta_index_freedom = 5 all_settings.append(params2) params3 = ParametersGPHH.default() params3.base_policy_method = BasePolicyMethod.SGS_READY all_settings.append(params3) params4 = ParametersGPHH.default() params4.base_policy_method = BasePolicyMethod.SGS_STRICT all_settings.append(params4) params5 = ParametersGPHH.default() params5.base_policy_method = BasePolicyMethod.SGS_TIME_FREEDOM params5.delta_time_freedom = 5 all_settings.append(params5) all_results = {} for dom in test_domain_names: all_results[dom] = {} for par in all_settings: print('par: ', par.base_policy_method) all_results[dom][par.base_policy_method] = [] for params in all_settings: for i in range(n_walks): print('params: ', params.base_policy_method) print('walk #', i) domain: RCPSP = load_domain("j301_1.sm") domain.set_inplace_environment(False) solver = GPHH(training_domains=domains_loaded, weight=-1, verbose=False, params_gphh=params) solver.solve(domain_factory=lambda: domain) for test_domain_str in test_domain_names: domain: RCPSP = load_domain(test_domain_str) domain.set_inplace_environment(False) state = domain.get_initial_state() solver.set_domain(domain) states, actions, values = rollout_episode( domain=domain, max_steps=1000, solver=solver, from_memory=state, verbose=False, outcome_formatter=lambda o: f'{o.observation} - cost: {o.value.cost:.2f}') print("One GPHH done") print("Best evolved heuristic: ", solver.best_heuristic) print('Cost: ', sum([v.cost for v in values])) all_results[test_domain_str][params.base_policy_method].append( sum([v.cost for v in values])) print('##### ALL RESULTS #####') for test_domain_str in test_domain_names: print(test_domain_str, ' :') for param_key in all_results[test_domain_str].keys(): print('\t', param_key, ': ') print('\t\t all runs:', all_results[test_domain_str][param_key]) print('\t\t mean:', np.mean(all_results[test_domain_str][param_key]))
def fitness_makespan_correlation(): # domain: RCPSP = load_domain("j301_1.sm") domain: RCPSP = load_domain("j1201_9.sm") training_domains_names = ["j301_" + str(i) + ".sm" for i in range(1, 11)] # training_domains_names =["j1201_9.sm"] # evaluation=EvaluationGPHH.PERMUTATION_DISTANCE # evaluation = EvaluationGPHH.SGS evaluation = EvaluationGPHH.SGS_DEVIATION training_domains = [] for td in training_domains_names: training_domains.append(load_domain(td)) with open('cp_reference_permutations') as json_file: cp_reference_permutations = json.load(json_file) with open('cp_reference_makespans') as json_file: cp_reference_makespans = json.load(json_file) set_feature = { FeatureEnum.EARLIEST_FINISH_DATE, FeatureEnum.EARLIEST_START_DATE, FeatureEnum.LATEST_FINISH_DATE, FeatureEnum.LATEST_START_DATE, FeatureEnum.N_PREDECESSORS, FeatureEnum.N_SUCCESSORS, FeatureEnum.ALL_DESCENDANTS, FeatureEnum.RESSOURCE_REQUIRED, FeatureEnum.RESSOURCE_AVG, FeatureEnum.RESSOURCE_MAX, # FeatureEnum.RESSOURCE_MIN FeatureEnum.RESSOURCE_NZ_MIN } pset = PrimitiveSet("main", len(set_feature)) pset.addPrimitive(operator.add, 2) pset.addPrimitive(operator.sub, 2) pset.addPrimitive(operator.mul, 2) pset.addPrimitive(protected_div, 2) pset.addPrimitive(max_operator, 2) pset.addPrimitive(min_operator, 2) pset.addPrimitive(operator.neg, 1) params_gphh = ParametersGPHH( set_feature=set_feature, set_primitves=pset, tournament_ratio=0.1, pop_size=10, n_gen=1, min_tree_depth=1, max_tree_depth=3, crossover_rate=0.7, mutation_rate=0.3, base_policy_method=BasePolicyMethod.SGS_READY, delta_index_freedom=0, delta_time_freedom=0, deap_verbose=True, evaluation=evaluation, permutation_distance=PermutationDistance.KTD # permutation_distance = PermutationDistance.KTD_HAMMING ) solver = GPHH( training_domains=training_domains, weight=-1, verbose=True, reference_permutations=cp_reference_permutations, # reference_makespans=cp_reference_makespans, training_domains_names=training_domains_names, params_gphh=params_gphh) solver.solve(domain_factory=lambda: domain) solver.permutation_distance = PermutationDistance.KTD solver.init_reference_permutations(cp_reference_permutations, training_domains_names) random_pop = pop = solver.toolbox.population(n=100) print(random_pop) out = "f_sgs_train\tf_sgs_dev_train\tf_perm_train\tmk_test\n" for ind in random_pop: fitness_sgs = solver.evaluate_heuristic(ind, solver.training_domains)[0] fitness_sgs_dev = solver.evaluate_heuristic_sgs_deviation( ind, solver.training_domains)[0] fitness_perm = solver.evaluate_heuristic_permutation( ind, solver.training_domains)[0] gphh_policy = GPHHPolicy( domain=domain, func_heuristic=solver.toolbox.compile(expr=ind), features=list(set_feature), params_gphh=params_gphh) domain.set_inplace_environment(False) state = domain.get_initial_state() states, actions, values = rollout_episode( domain=domain, max_steps=1000, solver=gphh_policy, from_memory=state, verbose=False, outcome_formatter=lambda o: f'{o.observation} - cost: {o.value.cost:.2f}') policy_makespan = states[-1].t out += str(fitness_sgs) + '\t' + str(fitness_sgs_dev) + '\t' + str( fitness_perm) + '\t' + str(policy_makespan) + '\n' print(out) print('---------') print('DONE') print(out)