def main():
    # load data
    mat = scipy.io.loadmat('../data/COIL20.mat')
    X = mat['X']    # data
    X = X.astype(float)
    y = mat['Y']    # label
    y = y[:, 0]

    # specify the second ranking function which uses all except the 1st eigenvalue
    kwargs = {'style': 0}

    # obtain the scores of features
    score = SPEC.spec(X, **kwargs)

    # sort the feature scores in an descending order according to the feature scores
    idx = SPEC.feature_ranking(score, **kwargs)

    # perform evaluation on clustering task
    num_fea = 100    # number of selected features
    num_cluster = 20    # number of clusters, it is usually set as the number of classes in the ground truth

    # obtain the dataset on the selected features
    selected_features = X[:, idx[0:num_fea]]

    # perform kmeans clustering based on the selected features and repeats 20 times
    nmi_total = 0
    acc_total = 0
    for i in range(0, 20):
        nmi, acc = unsupervised_evaluation.evaluation(X_selected=selected_features, n_clusters=num_cluster, y=y)
        nmi_total += nmi
        acc_total += acc

    # output the average NMI and average ACC
    print('NMI:', old_div(float(nmi_total),20))
    print('ACC:', old_div(float(acc_total),20))
Exemple #2
0
def main():
    # load data
    mat = scipy.io.loadmat('../data/COIL20.mat')
    X = mat['X']    # data
    X = X.astype(float)
    y = mat['Y']    # label
    y = y[:, 0]

    # specify the second ranking function which uses all except the 1st eigenvalue
    kwargs = {'style': 0}

    # obtain the scores of features
    score = SPEC.spec(X, **kwargs)

    # sort the feature scores in an descending order according to the feature scores
    idx = SPEC.feature_ranking(score, **kwargs)

    # perform evaluation on clustering task
    num_fea = 100    # number of selected features
    num_cluster = 20    # number of clusters, it is usually set as the number of classes in the ground truth

    # obtain the dataset on the selected features
    selected_features = X[:, idx[0:num_fea]]

    # perform kmeans clustering based on the selected features and repeats 20 times
    nmi_total = 0
    acc_total = 0
    for i in range(0, 20):
        nmi, acc = unsupervised_evaluation.evaluation(X_selected=selected_features, n_clusters=num_cluster, y=y)
        nmi_total += nmi
        acc_total += acc

    # output the average NMI and average ACC
    print 'NMI:', float(nmi_total)/20
    print 'ACC:', float(acc_total)/20
Exemple #3
0
def spec_FS(X_train):

    kwargs = {'style': 0}

    # obtain the scores of features
    score = SPEC.spec(X_train, **kwargs)

    # sort the feature scores in an descending order according to the feature scores
    idx = SPEC.feature_ranking(score, **kwargs)
    return (idx, score)
Exemple #4
0
    def utilize_selection_method(self, options):
        logging.info('     Unsupervised Feature Selection : Start')
        self.parse_options(options)
        normalize_feature = SupervisedFs.normalize_feature(self.data_feature)
        feature_amount = len(self.data_feature[0])
        selection_result = {}

        if self.options['v'] == 1:
            widget = [
                'Calculating Variance             : ',
                pb.Percentage(), ' ',
                pb.Bar(marker=pb.RotatingMarker()), ' ',
                pb.ETA()
            ]
            timer = pb.ProgressBar(widgets=widget,
                                   maxval=feature_amount).start()
            variance = []
            for n in range(0, feature_amount):
                variance.append([np.var(normalize_feature[:, n]), n + 1])
                timer.update(n)
            timer.finish()
            selection_result['variance'] = sorted(variance, reverse=True)

        if self.options['l'] == 1:
            logging.info('   -----Calculating Laplacian score---- ')
            kwargs_w = {
                'metric': 'euclidean',
                'neighbor': 'knn',
                'weight_mode': 'heat_kernel',
                'k': 5,
                't': 1
            }
            W = construct_W.construct_W(self.data_feature, **kwargs_w)
            score = lap_score.lap_score(self.data_feature, W=W)
            lap = []
            for n in range(0, feature_amount):
                lap.append([score[n], n + 1])
            selection_result['laplacian'] = sorted(lap, reverse=False)
            logging.info('   -----Calculating Laplacian score---- ==> Done')

        if self.options['s'] == 1:
            logging.info('   -----Calculating Spectral score---- ')
            kwargs_w = {
                'metric': 'euclidean',
                'neighbor': 'knn',
                'weight_mode': 'heat_kernel',
                'k': 5,
                't': 1
            }
            W = construct_W.construct_W(self.data_feature, **kwargs_w)
            kwargs_s = {'style': 2, 'W': W}
            score = SPEC.spec(self.data_feature, **kwargs_s)
            spec = []
            for n in range(0, feature_amount):
                spec.append([score[n], n + 1])
            selection_result['spectral'] = sorted(spec, reverse=True)
            logging.info('   -----Calculating Spectral score---- ==> Done')
        return selection_result
Exemple #5
0
def spec():
    before = datetime.datetime.now()
    result = SPEC.spec(data.copy(), labels.copy(), mode="index")
    after = datetime.datetime.now()
    print("SPEC")
    result = result[:treshold]
    print(len(result))
    print("cas: " + str(after - before))
    print('\n')
    if len(result) < len(header):
        transform_and_save(result, "SPEC")
Exemple #6
0
def spec_score(diheds):
  import scipy.io
  import numpy
  from numpy import mean
  import os 
  #os.chdir('/home/anu/Downloads/scikit-feature-1.0.0')
  from skfeature.function.similarity_based import SPEC

  
  idx = []
  #change the path for every system to be run.
  #os.chdir('/home/anu/Downloads/DESRES-Trajectory_GTT-1-protein/GTT-1-protein')
  for i in range(0,len(diheds),5):
   X= diheds[i]
   kwargs = {'style':0}
   score = SPEC.spec(X, **kwargs)
   print(score)
   idx.append(score)
  col_mean = mean(idx, axis =0)
  idx=SPEC.feature_ranking(col_mean,**kwargs)
  return col_mean,idx
Exemple #7
0
    def predict(self, X):
        """

        :param X: shape [n_row*n_clm, n_band]
        :return:
        """
        # specify the second ranking function which uses all except the 1st eigenvalue
        kwargs = {'style': 0}
        # n_row, n_column, __n_band = X.shape
        # XX = X.reshape((n_row * n_column, -1))  # n_sample * n_band
        XX = X

        # obtain the scores of features
        score = SPEC.spec(XX, **kwargs)

        # sort the feature scores in an descending order according to the feature scores
        idx = SPEC.feature_ranking(score, **kwargs)

        # obtain the dataset on the selected features
        selected_features = XX[:, idx[0:self.n_band]]
        # selected_features.reshape((self.n_band, n_row, n_column))
        # selected_features = np.transpose(selected_features, axes=(1, 2, 0))
        return selected_features
def test_spec():
    # load data
    mat = scipy.io.loadmat('./data/COIL20.mat')
    X = mat['X']  # data
    X = X.astype(float)
    y = mat['Y']  # label
    y = y[:, 0]

    # perform evaluation on clustering task
    num_fea = 100  # number of selected features
    num_cluster = 20  # number of clusters, it is usually set as the number of classes in the ground truth

    kwargs = {'style': 0}
    pipeline = []
    assert (SPEC.spec(X, y, n_selected_features=5, style=0), True)
Exemple #9
0
    def spec(self, community: int, attributes: list, percentile=0):
        result = []
        percentile = 0.1
        attributes = list(
            filter(lambda x: x != 'nodeId' and x != 'id' and x != 'community',
                   attributes))
        print(len(attributes))
        print('Attributes ', attributes)
        nodes_amount = self.get_nodes_amount_of_community(community)
        community_as_matrix = np.empty((nodes_amount, len(attributes)))
        community_nodes = self.get_community_nodes(community)
        node_index = 0
        for node in community_nodes:
            for attribute_index in range(len(attributes)):
                community_as_matrix[node_index, attribute_index] = node[
                    attributes[attribute_index]]
            node_index += 1

        if nodes_amount >= 5:
            w_matrix = construct_W(community_as_matrix)
        else:
            w_matrix = construct_W(community_as_matrix, k=(nodes_amount - 1))

        # w_matrix = construct_W(community_as_matrix)

        scores = SPEC.spec(community_as_matrix, W=w_matrix)
        ranked_attributes = feature_ranking(scores)
        boundary = len(attributes) * percentile
        # boundary = 1
        print('Percentile ', percentile)
        print('Boundary ', boundary)
        print('Ranked attributes ', ranked_attributes)
        for i in range(len(attributes)):
            if ranked_attributes[i] < boundary:
                result.append(attributes[i])

        return result
Exemple #10
0
def SPEC_featureSelection(x, y):
    score = SPEC.spec(x, y)
    rank = score_to_rank(score)
    return rank
Exemple #11
0
def calc_SPEC(data):
    kwargs = {'style': 0}

    return SPEC.spec(data, **kwargs)
def generate_result_dist(dataset, x,y,num_select, zero_mean=False, N=1000, t=0.6, thresh=0.1):
    if zero_mean == False:
        x = normalize(x,axis=0)
    else:
        x = standardize_feature(x)
        
    n,d = x.shape
    
    if num_select==300:
        start_dim = 20; step = 20
    elif num_select==200:         # the dimension
        start_dim = 20; step = 10
    elif num_select==100:
        start_dim = 10; step = 10
    elif num_select==50:
        start_dim = 10; step = 5
    elif num_select == 20:
        start_dim = 4; step = 2
    else:
        start_dim = 5; step = 1
           
    dimension_list = list(range(start_dim,num_select+1,step))
    
    #########  rank: parameter  preserve_pctg, num_use  #########
    D0 = compute_dist(x)
    
    preserve_pctg_list = [0.2,0.4,0.6,0.8,1]   #dimension 0
    num_use_list = [0.1,0.2,0.3,0.4,0.5]    #dimension 1
        
    rank_result = np.zeros([len(preserve_pctg_list),len(num_use_list),7,len(dimension_list)])
    rank_result_l1 = np.zeros([len(preserve_pctg_list),len(num_use_list),7,len(dimension_list)])
    rank_result_l2 = np.zeros([len(preserve_pctg_list),len(num_use_list),7,len(dimension_list)])
    rank_result_lmax = np.zeros([len(preserve_pctg_list),len(num_use_list),7,len(dimension_list)])
    
    for i,preserve_pctg in enumerate(preserve_pctg_list):
        for j,num_use in enumerate(num_use_list):
            print(i,j)
            rank_selected, rank_selected_l1, rank_selected_l2, rank_selected_lmax= ranking_selection(x, num_select, N=N, num_use=int(num_use*d+1),sample_pctg=1, preserve_pctg=preserve_pctg)
            rank_selected = list(rank_selected)[::-1]

            for k,dimension in enumerate(dimension_list):      #performance using different number fo features
                s = rank_selected[:dimension]
                rank_x = x[:,s]
                D_rank = compute_dist(rank_x)
                rank_result[i,j,0,k] = ef.dif_dist(D0,D_rank,'l1')
                rank_result[i,j,1,k] = ef.dif_dist(D0,D_rank,'l2')
                rank_result[i,j,2,k] = ef.dif_dist(D0,D_rank,'lmax')
                
                s_l1 = rank_selected_l1[:dimension]
                rank_l1_x = x[:,s_l1]
                D1 = compute_dist(rank_l1_x)
                
                rank_result_l1[i,j,0,k] = ef.dif_dist(D0,D1,'l1')
                rank_result_l1[i,j,1,k] = ef.dif_dist(D0,D1,'l2')
                rank_result_l1[i,j,2,k] = ef.dif_dist(D0,D1,'lmax')               

                s_l2 = rank_selected_l2[:dimension]
                rank_l2_x = x[:,s_l2]
                D2 = compute_dist(rank_l2_x)
                
                rank_result_l2[i,j,0,k] = ef.dif_dist(D0,D2,'l1')
                rank_result_l2[i,j,1,k] = ef.dif_dist(D0,D2,'l2')
                rank_result_l2[i,j,2,k] = ef.dif_dist(D0,D2,'lmax')  
                
                s_lmax = rank_selected_lmax[:dimension]
                rank_lmax_x = x[:,s_lmax]
                D_max = compute_dist(rank_lmax_x)
                
                rank_result_lmax[i,j,0,k] = ef.dif_dist(D0,D_max,'l1')
                rank_result_lmax[i,j,1,k] = ef.dif_dist(D0,D_max,'l2')
                rank_result_lmax[i,j,2,k] = ef.dif_dist(D0,D_max,'lmax')                 

    
    np.save('./result/'+dataset+'/rank_dist',rank_result)
    np.save('./result/'+dataset+'/rank_l1_dist',rank_result_l1)
    np.save('./result/'+dataset+'/rank_l2_dist',rank_result_l2)
    np.save('./result/'+dataset+'/rank_lmax_dist',rank_result_lmax)
    
    ########  lap_score  ###########
    lap_score_result = np.zeros([7,len(dimension_list)])
    lap_score_selected = lap_score.lap_score(x)
    lap_score_selected = list(np.argsort(lap_score_selected)[:num_select])    #find minimum
    
    for k,dimension in enumerate(dimension_list):      #performance using different number fo features
        s = lap_score_selected[:dimension]
        lap_score_x = x[:,s]
        D1 = compute_dist(lap_score_x)
        
        lap_score_result[0,k] = ef.dif_dist(D0,D1,'l1')
        lap_score_result[1,k] = ef.dif_dist(D0,D1,'l2')
        lap_score_result[2,k] = ef.dif_dist(D0,D1,'lmax')

    np.save('./result/'+dataset+'/lap_score_dist',lap_score_result)
    
    ########  SPEC  ###########
    SPEC_result = np.zeros([7,len(dimension_list)])
    SPEC_selected = SPEC.spec(x)
    SPEC_selected = list(np.argsort(SPEC_selected)[:num_select])    #find minimum
    
    for k,dimension in enumerate(dimension_list):      #performance using different number fo features
        s = SPEC_selected[:dimension]
        SPEC_x = x[:,s]
        D1 = compute_dist(SPEC_x)
        
        SPEC_result[0,k] = ef.dif_dist(D0,D1,'l1')
        SPEC_result[1,k] = ef.dif_dist(D0,D1,'l2')
        SPEC_result[2,k] = ef.dif_dist(D0,D1,'lmax')

    np.save('./result/'+dataset+'/SPEC_dist',SPEC_result)
    
    #######  MCFS  parameter: num_clusters  ##############   
    num_clusters_list = [5,10,20,30]     
    MCFS_result = np.zeros([len(num_clusters_list),7,len(dimension_list)])
    for i,num_clusters in enumerate(num_clusters_list):
        MCFS_W = MCFS.mcfs(x,num_select,**{'n_clusters':num_clusters})
        MCFS_selected = [np.max(np.abs(x)) for x in MCFS_W]     #find maximum
        MCFS_selected= np.argsort(MCFS_selected)[-num_select:]
        MCFS_selected = list(MCFS_selected)[::-1]
        for k,dimension in enumerate(dimension_list):      #performance using different number fo features
            s = MCFS_selected[:dimension]
            MCFS_x = x[:,s]
            D1 = compute_dist(MCFS_x)
            
            MCFS_result[i,0,k] = ef.dif_dist(D0,D1,'l1')
            MCFS_result[i,1,k] = ef.dif_dist(D0,D1,'l2')
            MCFS_result[i,2,k] = ef.dif_dist(D0,D1,'lmax')
           
        
    np.save('./result/'+dataset+'/MCFS_dist',MCFS_result)   
    
    return rank_result, rank_result_l1, rank_result_l2,rank_result_lmax,lap_score_result, SPEC_result, MCFS_result
def compare_methods(x,y,num_select,pctg=0.5,sample_pctg=1, num_clusters=5,zero_mean=False,dim=1,t=0.8,thresh=0.1):
    if zero_mean == False:
        x = normalize(x,axis=0)
    else:
        x = standardize_feature(x)
        
    n,d = x.shape
    
#    idx = np.random.permutation(n)
#    x,y = x[idx], y[idx]
#    
#    #########  split train and test  #########
#    X=x;Y=y
#    train_num = int(n*0.6)
#    test_num = n-int(n*0.6)
#    x=X[:train_num,:]; y=Y[:train_num]
#    x_test = X[-test_num:,:];y_test = Y[-test_num:]
    
    ###########  calculate  ######################

    start_time = time.clock()
    rf_result = random_selection(x, num_select, N=500, num_use=int(0.5*d),pctg=pctg, two_sided=False)
    print('rf running time:',time.clock()-start_time)

    start_time = time.clock()
    rank_result,l1,l2,lmax= ranking_selection(x, num_select, N=500, num_use=int(0.5*d),sample_pctg=1, preserve_pctg=pctg)
    print('rank running time:',time.clock()-start_time)
    
    start_time = time.clock()
    lap_score_result = lap_score.lap_score(x)
    lap_score_result= np.argsort(lap_score_result)[:num_select]    #find minimum
    print('lap_score running time:',time.clock()-start_time)
    
    start_time = time.clock()
    SPEC_result = SPEC.spec(x)
    print('SPEC running time:',time.clock()-start_time)
    SPEC_result= np.argsort(SPEC_result)[:num_select]     #find minimum
    
    '''sparse learning based'''
    start_time = time.clock()
    MCFS_W = MCFS.mcfs(x,num_select,**{'n_clusters':num_clusters})
    print('MCFS running time:',time.clock()-start_time)
    MCFS_result = [np.max(np.abs(x)) for x in MCFS_W]     #find maximum
    MCFS_result= np.argsort(MCFS_result)[-num_select:]

#    start_time = time.clock()
#    NDFS_W = NDFS.ndfs(x,**{'n_clusters':num_clusters})
#    print('NDFS running time:',time.clock()-start_time)
#    NDFS_result = [np.sqrt(np.sum(x**2)) for x in NDFS_W]     #find maximum
#    NDFS_result= np.argsort(NDFS_result)[-num_select:]
#
#    start_time = time.clock()
#    UDFS_W = UDFS.udfs(x,**{'n_clusters':num_clusters}) 
#    print('UDFS running time:',time.clock()-start_time)             
#    UDFS_result = [np.sqrt(np.sum(x**2)) for x in UDFS_W]     #find minimum ??????????????????????
#    UDFS_result= np.argsort(UDFS_result)[:num_select]
    
#    prop_x = x[:,list(stepwise)]
    rf_x = x[:,list(rf_result)]
    rank_x = x[:,list(rank_result)]
    l1_x = x[:,list(l1)]
    l2_x = x[:,list(l2)]
    lmax_x = x[:,list(lmax)]
    lap_score_x = x[:,list(lap_score_result)]
    SPEC_x = x[:,list(SPEC_result)]
    MCFS_x = x[:,list(MCFS_result)]
#    NDFS_x = x[:,list(NDFS_result)]
#    UDFS_x = x[:,list(UDFS_result)]
    
#    '''[KNN purity NMI dgm0 dgm1], each one is a matrix'''
#    methods = ['rf','rank','lap_score','SPEC','MCFS']
#    for method in methods:
#        if method=='rf':
#            selected_feature = list(rf_result).reverse()
#        elif method=='rank':
#            selected_feature = list(rank_result).reverse()
#        elif method=='lap_score':
#            selected_feature = list(lap_score_result)
#        elif method=='SPEC':
#            selected_feature = list(SPEC_result)
#        else:
#            selected_feature = list(MCFS_result).reverse()
#        
#        if num_select<=50:         # the dimension
#            start_dim = 5; step = 2
#        else:
#            start_dim = 10; step = 5
        
    print('KNN accuracy')
    print('rf', ef.knn_accuracy(x,y,rf_result))
    print('rank', ef.knn_accuracy(x,y,rank_result))
    print('l1', ef.knn_accuracy(x,y,l1))
    print('l2', ef.knn_accuracy(x,y,l2))
    print('lmax', ef.knn_accuracy(x,y,lmax))
    print('lap_score', ef.knn_accuracy(x,y,lap_score_result))
    print('SPEC', ef.knn_accuracy(x,y,SPEC_result))
    print('MCFS',ef.knn_accuracy(x,y,MCFS_result))
#    print('NDFS',ef.knn_accuracy(x_test,y_test,NDFS_result))
#    print('UDFS',ef.knn_accuracy(x_test,y_test,UDFS_result),'\n')  

#    print('connectivity')
#    print('rf', ef.connectivity(x,rf_x,pctg, two_sided))
#    print('rank', ef.connectivity(x,rank_x,pctg, two_sided))
#    print('lap_score', ef.connectivity(x,lap_score_x,pctg, two_sided))
#    print('SPEC', ef.connectivity(x,SPEC_x,pctg, two_sided))
#    print('cut-SPEC', ef.connectivity(x,CSPEC_x,pctg, two_sided))
#    print('MCFS',ef.connectivity(x,MCFS_x,pctg, two_sided))
    
#    print('NDFS',ef.connectivity(x,NDFS_x,pctg, two_sided))
#    print('UDFS',ef.connectivity(x,UDFS_x,pctg, two_sided),'\n')  

    print('purity score | NMI')
    print('origin', ef.purity_score(x,y))
    print('rf', ef.purity_score(rf_x,y))
    print('rank', ef.purity_score(rank_x,y))
    print('lap_score', ef.purity_score(lap_score_x,y))
    print('SPEC', ef.purity_score(SPEC_x,y)  )
    print('MCFS', ef.purity_score(MCFS_x,y))
   
    dgm = ef.compute_dgm(x, t, dim, thresh)
    dgm_rf = ef.compute_dgm(rf_x, t, dim, thresh)
    dgm_rank = ef.compute_dgm(rank_x, t, dim, thresh)
    dgm_l1 = ef.compute_dgm(l1_x, t, dim, thresh)
    dgm_l2 = ef.compute_dgm(l2_x, t, dim, thresh)
    dgm_lmax = ef.compute_dgm(lmax_x, t, dim, thresh)
    dgm_lap_score = ef.compute_dgm(lap_score_x, t, dim, thresh)
    dgm_SPEC = ef.compute_dgm(SPEC_x, t, dim, thresh)
    dgm_MCFS = ef.compute_dgm(MCFS_x, t, dim, thresh)
#    plt.figure()
#    plt.plot(dgm[:,-2:], 'ro')
#    plt.figure()
#    plt.plot(dgm_rf[:,-2:], 'ro')
#    plt.figure()
#    plt.plot(dgm_rank[:,-2:], 'ro')
#    plt.figure()
#    plt.plot(dgm_SPEC[:,-2:], 'ro')
#    plt.figure()
#    plt.plot(dgm_MCFS[:,-2:], 'ro')
    
    print('dgm distance')
    print('rf', ef.dgm_distance(dgm,dgm_rf,'W', dim),'  ',ef.dgm_distance(dgm,dgm_rf,'B', dim))
    print('rank', ef.dgm_distance(dgm,dgm_rank,'W', dim),'  ',ef.dgm_distance(dgm,dgm_rank,'B', dim))
    print('l1', ef.dgm_distance(dgm,dgm_l1,'W', dim),'  ',ef.dgm_distance(dgm,dgm_l1,'B', dim))
    print('l2', ef.dgm_distance(dgm,dgm_l2,'W', dim),'  ',ef.dgm_distance(dgm,dgm_l2,'B', dim))
    print('lmax', ef.dgm_distance(dgm,dgm_lmax,'W', dim),'  ',ef.dgm_distance(dgm,dgm_lmax,'B', dim))
    print('lap_score', ef.dgm_distance(dgm,dgm_lap_score,'W', dim),'  ',ef.dgm_distance(dgm,dgm_lap_score,'B', dim))
    print('SPEC', ef.dgm_distance(dgm,dgm_SPEC,'W', dim),'  ',ef.dgm_distance(dgm,dgm_SPEC,'B', dim))
    print('MCFS', ef.dgm_distance(dgm,dgm_MCFS,'W', dim),'  ',ef.dgm_distance(dgm,dgm_MCFS,'B', dim))
Exemple #14
0
def compare_methods(x,
                    y,
                    num_select,
                    pctg=0.1,
                    pack_size=1,
                    num_clusters=5,
                    two_sided=False):

    n, d = x.shape
    idx = np.random.permutation(n)
    x, y = x[idx], y[idx]

    #########  split train and test  #########
    X = x
    Y = y
    train_num = int(n * 0.7)
    test_num = n - int(n * 0.7)
    x = X[:train_num, :]
    y = Y[:train_num]
    x_test = X[-test_num:, :]
    y_test = Y[-test_num:]

    ###########  other methods  ######################
    '''    Similarity based: lap_score  SPEC          '''
    start_time = time.clock()
    lap_score_result = lap_score.lap_score(x)
    lap_score_result = np.argsort(lap_score_result)[:num_select]
    print('lap_score running time:', time.clock() - start_time)

    #    _,stepwise = backward_distance_selection(x,num_select,pctg,pack_size)   #pctg controls sensitivity to outliers

    start_time = time.clock()
    rf_result = random_selection(x,
                                 num_select,
                                 N=300,
                                 num_use=int(d / 2),
                                 pctg=pctg,
                                 two_sided=two_sided)
    print('rf running time:', time.clock() - start_time)

    start_time = time.clock()
    SPEC_result = SPEC.spec(x)
    print('SPEC running time:', time.clock() - start_time)
    SPEC_result = np.argsort(SPEC_result)[:num_select]  #find minimum

    start_time = time.clock()
    CSPEC_result = cut_spec(x, pctg=0.15)
    print('cut-SPEC running time:', time.clock() - start_time)
    CSPEC_result = np.argsort(CSPEC_result)[:num_select]  #find minimum
    '''sparse learning based'''
    start_time = time.clock()
    MCFS_W = MCFS.mcfs(x, num_select)
    print('MCFS running time:', time.clock() - start_time)
    MCFS_result = [np.max(np.abs(x)) for x in MCFS_W]  #find maximum
    MCFS_result = np.argsort(MCFS_result)[-num_select:]

    #    start_time = time.clock()
    #    NDFS_W = NDFS.ndfs(x,**{'n_clusters':num_clusters})
    #    print('NDFS running time:',time.clock()-start_time)
    #    NDFS_result = [np.sqrt(np.sum(x**2)) for x in NDFS_W]     #find maximum
    #    NDFS_result= np.argsort(NDFS_result)[-num_select:]
    #
    #    start_time = time.clock()
    #    UDFS_W = UDFS.udfs(x,**{'n_clusters':num_clusters})
    #    print('UDFS running time:',time.clock()-start_time)
    #    UDFS_result = [np.sqrt(np.sum(x**2)) for x in UDFS_W]     #find minimum ??????????????????????
    #    UDFS_result= np.argsort(UDFS_result)[:num_select]

    #    prop_x = x[:,list(stepwise)]
    rf_x = x[:, list(rf_result)]
    lap_score_x = x[:, list(lap_score_result)]
    SPEC_x = x[:, list(SPEC_result)]
    CSPEC_x = x[:, list(CSPEC_result)]
    MCFS_x = x[:, list(MCFS_result)]
    #    NDFS_x = x[:,list(NDFS_result)]
    #    UDFS_x = x[:,list(UDFS_result)]

    print('\n')
    print('Class Seperability')
    #    print('prop', ef.class_seperability(prop_x,y))
    print('rf', ef.class_seperability(rf_x, y))
    print('lap_score', ef.class_seperability(lap_score_x, y))
    print('SPEC', ef.class_seperability(SPEC_x, y))
    print('cut-SPEC', ef.class_seperability(CSPEC_x, y))
    print('MCFS', ef.class_seperability(MCFS_x, y))
    #    print('NDFS',ef.class_seperability(NDFS_x,y))
    #    print('UDFS',ef.class_seperability(UDFS_x,y))

    print('\n')
    print('KNN accuracy')
    #    print('prop', ef.knn_accuracy(prop_x,y))
    print('rf', ef.knn_accuracy(x_test, y_test, rf_result))
    print('lap_score', ef.knn_accuracy(x_test, y_test, lap_score_result))
    print('SPEC', ef.knn_accuracy(x_test, y_test, SPEC_result))
    print('cut-SPEC', ef.knn_accuracy(x_test, y_test, CSPEC_result))
    print('MCFS', ef.knn_accuracy(x_test, y_test, MCFS_result))
    #    print('NDFS',ef.knn_accuracy(x_test,y_test,NDFS_result))
    #    print('UDFS',ef.knn_accuracy(x_test,y_test,UDFS_result),'\n')

    print('\n')
    print('connectivity')
    #    print('prop', ef.knn_accuracy(prop_x,y))
    print('rf', ef.connectivity(x, rf_x, pctg, two_sided))
    print('lap_score', ef.connectivity(x, lap_score_x, pctg, two_sided))
    print('SPEC', ef.connectivity(x, SPEC_x, pctg, two_sided))
    print('cut-SPEC', ef.connectivity(x, CSPEC_x, pctg, two_sided))
    print('MCFS', ef.connectivity(x, MCFS_x, pctg, two_sided))
def SKF_spec(X, y):
    # specify the second ranking function which uses all except the 1st eigenvalue
    kwargs = {'style': 0}
    # obtain the scores of features
    score = SPEC.spec(X, **kwargs)
    return SPEC.feature_ranking(score, **kwargs)
Exemple #16
0
        "metric": "euclidean",
        "neighbor_mode": "knn",
        "weight_mode": "heat_kernel",
        "k": 5,
        "t": 1
    }
    W = construct_W(data, **kwrags_W)
    # 参数n_selected_features用于控制LARs算法解的稀疏性,也就是result每一列中非零元素的个数
    # 参数n_clusters用于控制LE降维的目标维数,也就是result的列数
    result = MCFS.mcfs(data, n_selected_features=2, W=W, n_clusters=2)
    print result
elif methodType == 2:
    # Entropy based Feature Ranking
    result = EntropyBasedFeatureRanking(data)
    print result
elif methodType == 3:
    # SPEC
    kwrags_W = {
        "metric": "euclidean",
        "neighbor_mode": "knn",
        "weight_mode": "heat_kernel",
        "k": 5,
        "t": 1
    }
    W = construct_W(data, **kwrags_W)
    result = SPEC.spec(data, style=-1, W=W)
    print result

timeEnd = datetime.datetime.now()
print "Run Time:", timeEnd - timeStart