class TestNodality(TestCase): """Test for Element.doflocs.""" elems = [ ElementLineP0(), ElementLineP1(), ElementLineP2(), ElementLinePp(1), ElementLinePp(3), ElementLineMini(), ElementTriP0(), ElementTriP1(), ElementTriP2(), ElementTriP3(), ElementTriP4(), ElementTriMini(), ElementQuad0(), ElementQuad1(), ElementQuad2(), ElementQuadS2(), ElementQuadP(1), ElementQuadP(3), ElementTetP0(), ElementTetP1(), ElementTetP2(), ElementTetMini(), ElementHex1(), ElementHexS2(), ElementHex2(), ElementTetCR(), ElementTetCCR(), ElementTriCR(), ElementTriCCR(), ElementWedge1(), ] def runTest(self): for e in self.elems: N = e.doflocs.shape[0] Ih = np.zeros((N, N)) for itr in range(N): Ih[itr] = e.lbasis(e.doflocs.T, itr)[0] # Remove nan-rows: test nodality only on non-nan doflocs. # # Some elements, such as ElementTriMini might have a combination # of nodal dofs and non-nodal dofs. # # Nodal dof is defined so that there exists a point where the # corresponding basis function is one, and other basis functions # are zero. Non-nodal dof does not satisfy this property. ix = np.isnan(np.sum(Ih, axis=1)) Nnan = np.sum(ix) ixs = np.nonzero(~ix)[0] Ih = Ih[ixs].T[ixs].T assert_allclose(Ih, np.eye(N - Nnan), atol=1e-13, err_msg="{}".format(type(e)))
class TestPartitionofUnity(TestCase): """Test that elements form a partition of unity.""" elems = [ ElementLineP1(), ElementLineP2(), ElementTriP1(), ElementTriP2(), ElementQuad1(), ElementQuad2(), ElementQuadS2(), ElementTetP1(), ElementTetP2(), ElementHex1(), ElementHexS2(), ElementHex2(), ] def runTest(self): for elem in self.elems: if elem.dim == 1: y = np.array([[.15]]) elif elem.dim == 2: y = np.array([[.15], [.15]]) elif elem.dim == 3: y = np.array([[.15], [.15], [.15]]) out = 0. for i in range(elem.doflocs.shape[0]): out += elem.lbasis(y, i)[0][0] self.assertAlmostEqual(out, 1, msg='failed for {}'.format(elem))
def test_adaptive_splitting_3d_3(): # adaptively refine one face of a cube, check that the mesh parameter h # is approximately linear w.r.t to distance from the face m = MeshTet.init_tensor(np.linspace(0, 1, 3), np.linspace(0, 1, 3), np.linspace(0, 1, 3)) for itr in range(15): m = m.refined(m.f2t[0, m.facets_satisfying(lambda x: x[0] == 0)]) @LinearForm def hproj(v, w): return w.h * v basis = Basis(m, ElementTetP1()) h = projection(hproj, basis) funh = basis.interpolator(h) xs = np.vstack(( np.linspace(0, .5, 20), np.zeros(20) + .5, np.zeros(20) + .5, )) hs = funh(xs) assert np.max(np.abs(hs - xs[0])) < 0.063
class TestDerivatives(TestCase): """Test values of derivatives.""" elems = [ ElementLineP1(), ElementLineP2(), ElementTriP1(), ElementTriP2(), ElementTriMini(), ElementQuad1(), ElementQuad2(), ElementQuadS2(), ElementTetP1(), ElementTetP2(), ElementTetMini(), ElementHex1(), ElementHexS2(), ] def runTest(self): for elem in self.elems: eps = 1e-6 for base in [0., .3, .6, .9]: if elem.dim == 1: y = np.array([[base, base + eps]]) elif elem.dim == 2: y = np.array([[base, base + eps, base, base], [base, base, base, base + eps]]) elif elem.dim == 3: y = np.array([[base, base + eps, base, base, base, base], [base, base, base, base + eps, base, base], [base, base, base, base, base, base + eps]]) i = 0 while True: try: out = elem.lbasis(y, i) except ValueError: break diff = (out[0][1] - out[0][0]) / eps errmsg = 'x-derivative for {}th bfun failed for {}' self.assertAlmostEqual(diff, out[1][0][0], delta=1e-3, msg=errmsg.format(i, elem)) if elem.dim > 1: diff = (out[0][3] - out[0][2]) / eps errmsg = 'y-derivative for {}th bfun failed for {}' self.assertAlmostEqual(diff, out[1][1][3], delta=1e-3, msg=errmsg.format(i, elem)) if elem.dim == 3: diff = (out[0][5] - out[0][4]) / eps errmsg = 'z-derivative for {}th bfun failed for {}' self.assertAlmostEqual(diff, out[1][2][4], delta=1e-3, msg=errmsg.format(i, elem)) i += 1
if self.test_integrate_volume: # by Gauss theorem this integrates to one for itr in range(m.p.shape[0]): @LinearForm def linf(v, w): return w.n[itr] * v b = asm(linf, basis) self.assertAlmostEqual(b @ m.p[itr, :], 1.0, places=5) class NormalVectorTestTet(NormalVectorTestTri): case = (MeshTet(), ElementTetP1()) class NormalVectorTestTetP2(NormalVectorTestTri): case = (MeshTet(), ElementTetP2()) test_integrate_volume = False class NormalVectorTestQuad(NormalVectorTestTri): case = (MeshQuad(), ElementQuad1()) class NormalVectorTestQuadP(NormalVectorTestTri):
def create_basis(self, m): e = ElementTetP1() return Basis(m, e)
with self.assertRaises(ValueError): m = MeshTri() e = ElementTetP2() basis = CellBasis(m, e) @pytest.mark.parametrize( "mtype,e,nrefs,npoints", [ (MeshTri, ElementTriP1(), 0, 10), (MeshTri, ElementTriP2(), 1, 10), (MeshTri, ElementTriP1(), 5, 10), (MeshTri, ElementTriP1(), 1, 3e5), (MeshTet, ElementTetP2(), 1, 10), (MeshTet, ElementTetP1(), 4, 10), (MeshTet, ElementTetP1(), 1, 3e4), (MeshQuad, ElementQuad1(), 1, 10), (MeshQuad, ElementQuad1(), 1, 3e5), (MeshHex, ElementHex1(), 1, 1e5), (MeshWedge1, ElementWedge1(), 0, 10), ] ) def test_interpolator_probes(mtype, e, nrefs, npoints): m = mtype() if nrefs > 0: m = m.refined(nrefs) np.random.seed(0) X = np.random.rand(m.p.shape[0], int(npoints))
class TestElementQuadBFS(TestCase): def test_throw_index_error(self): """Tests that exception is thrown when i % 4 not in (0, 1, 2, 3).""" element = ElementQuadBFS() with self.assertRaises(ValueError): element.gdof(0, 0, -1) with self.assertRaises(ValueError): element.gdof(0, 0, 16) @pytest.mark.parametrize("m,e,edg", [ (MeshTri().refined(), ElementTriP1(), ElementTriDG), (MeshTri().refined(), ElementTriP2(), ElementTriDG), (MeshTet().refined(), ElementTetP1(), ElementTetDG), (MeshTet().refined(), ElementTetP2(), ElementTetDG), (MeshTri().refined(), ElementTriArgyris(), ElementTriDG), (MeshTri().refined(), ElementTriMorley(), ElementTriDG), (MeshTri().refined(), ElementTriHermite(), ElementTriDG), (MeshHex().refined(), ElementHex1(), ElementHexDG), (MeshQuad().refined(), ElementQuad1(), ElementQuadDG), ]) def test_dg_element(m, e, edg): edg = edg(e) @Functional def square(w): return w['random']**2
with self.assertRaises(ValueError): m = MeshTri() e = ElementTetP2() basis = InteriorBasis(m, e) @pytest.mark.parametrize("mtype,e1,e2", [ (MeshTri, ElementTriP1(), ElementTriP0()), (MeshTri, ElementTriP1(), ElementTriP1()), (MeshTri, ElementTriP2(), ElementTriP1()), (MeshTri, ElementTriP2(), ElementTriP2()), (MeshTri, ElementTriP2(), None), (MeshQuad, ElementQuad1(), ElementQuad0()), (MeshQuad, ElementQuad1(), ElementQuad1()), (MeshQuad, ElementQuad2(), ElementQuad2()), (MeshTet, ElementTetP1(), ElementTetP0()), (MeshTet, ElementTetP2(), ElementTetP2()), (MeshHex, ElementHex1(), ElementHex0()), (MeshHex, ElementHex1(), ElementHex1()), (MeshHex, ElementHex2(), ElementHex2()), ]) def test_trace(mtype, e1, e2): m = mtype().refined(3) # use the boundary where last coordinate is zero basis = FacetBasis( m, e1, facets=m.facets_satisfying(lambda x: x[x.shape[0] - 1] == 0.0)) xfun = projection(lambda x: x[0], InteriorBasis(m, e1)) nbasis, y = basis.trace(xfun, lambda p: p[0:(p.shape[0] - 1)],
places=10) if self.test_integrate_volume: # by Gauss theorem this integrates to one for itr in range(m.p.shape[0]): @LinearForm def linf(v, w): return w.n[itr] * v b = asm(linf, basis) self.assertAlmostEqual(b @ m.p[itr, :], 1.0, places=5) class NormalVectorTestTet(NormalVectorTestTri): case = (MeshTet(), ElementTetP1()) class NormalVectorTestTetP2(NormalVectorTestTri): case = (MeshTet(), ElementTetP2()) test_integrate_volume = False class NormalVectorTestQuad(NormalVectorTestTri): case = (MeshQuad(), ElementQuad1()) class NormalVectorTestQuadP(NormalVectorTestTri):