Exemple #1
0
class TestNodality(TestCase):
    """Test for Element.doflocs."""

    elems = [
        ElementLineP0(),
        ElementLineP1(),
        ElementLineP2(),
        ElementLinePp(1),
        ElementLinePp(3),
        ElementLineMini(),
        ElementTriP0(),
        ElementTriP1(),
        ElementTriP2(),
        ElementTriP3(),
        ElementTriP4(),
        ElementTriMini(),
        ElementQuad0(),
        ElementQuad1(),
        ElementQuad2(),
        ElementQuadS2(),
        ElementQuadP(1),
        ElementQuadP(3),
        ElementTetP0(),
        ElementTetP1(),
        ElementTetP2(),
        ElementTetMini(),
        ElementHex1(),
        ElementHexS2(),
        ElementHex2(),
        ElementTetCR(),
        ElementTetCCR(),
        ElementTriCR(),
        ElementTriCCR(),
        ElementWedge1(),
    ]

    def runTest(self):
        for e in self.elems:
            N = e.doflocs.shape[0]
            Ih = np.zeros((N, N))
            for itr in range(N):
                Ih[itr] = e.lbasis(e.doflocs.T, itr)[0]

            # Remove nan-rows: test nodality only on non-nan doflocs.
            #
            # Some elements, such as ElementTriMini might have a combination
            # of nodal dofs and non-nodal dofs.
            #
            # Nodal dof is defined so that there exists a point where the
            # corresponding basis function is one, and other basis functions
            # are zero. Non-nodal dof does not satisfy this property.
            ix = np.isnan(np.sum(Ih, axis=1))
            Nnan = np.sum(ix)
            ixs = np.nonzero(~ix)[0]
            Ih = Ih[ixs].T[ixs].T

            assert_allclose(Ih,
                            np.eye(N - Nnan),
                            atol=1e-13,
                            err_msg="{}".format(type(e)))
Exemple #2
0
class TestPartitionofUnity(TestCase):
    """Test that elements form a partition of unity."""

    elems = [
        ElementLineP1(),
        ElementLineP2(),
        ElementTriP1(),
        ElementTriP2(),
        ElementQuad1(),
        ElementQuad2(),
        ElementQuadS2(),
        ElementTetP1(),
        ElementTetP2(),
        ElementHex1(),
        ElementHexS2(),
        ElementHex2(),
    ]

    def runTest(self):
        for elem in self.elems:
            if elem.dim == 1:
                y = np.array([[.15]])
            elif elem.dim == 2:
                y = np.array([[.15], [.15]])
            elif elem.dim == 3:
                y = np.array([[.15], [.15], [.15]])
            out = 0.
            for i in range(elem.doflocs.shape[0]):
                out += elem.lbasis(y, i)[0][0]
            self.assertAlmostEqual(out, 1, msg='failed for {}'.format(elem))
Exemple #3
0
def test_adaptive_splitting_3d_3():
    # adaptively refine one face of a cube, check that the mesh parameter h
    # is approximately linear w.r.t to distance from the face
    m = MeshTet.init_tensor(np.linspace(0, 1, 3), np.linspace(0, 1, 3),
                            np.linspace(0, 1, 3))

    for itr in range(15):
        m = m.refined(m.f2t[0, m.facets_satisfying(lambda x: x[0] == 0)])

    @LinearForm
    def hproj(v, w):
        return w.h * v

    basis = Basis(m, ElementTetP1())
    h = projection(hproj, basis)

    funh = basis.interpolator(h)

    xs = np.vstack((
        np.linspace(0, .5, 20),
        np.zeros(20) + .5,
        np.zeros(20) + .5,
    ))
    hs = funh(xs)

    assert np.max(np.abs(hs - xs[0])) < 0.063
Exemple #4
0
class TestDerivatives(TestCase):
    """Test values of derivatives."""

    elems = [
        ElementLineP1(),
        ElementLineP2(),
        ElementTriP1(),
        ElementTriP2(),
        ElementTriMini(),
        ElementQuad1(),
        ElementQuad2(),
        ElementQuadS2(),
        ElementTetP1(),
        ElementTetP2(),
        ElementTetMini(),
        ElementHex1(),
        ElementHexS2(),
    ]

    def runTest(self):
        for elem in self.elems:
            eps = 1e-6
            for base in [0., .3, .6, .9]:
                if elem.dim == 1:
                    y = np.array([[base, base + eps]])
                elif elem.dim == 2:
                    y = np.array([[base, base + eps, base, base],
                                  [base, base, base, base + eps]])
                elif elem.dim == 3:
                    y = np.array([[base, base + eps, base, base, base, base],
                                  [base, base, base, base + eps, base, base],
                                  [base, base, base, base, base, base + eps]])
                i = 0
                while True:
                    try:
                        out = elem.lbasis(y, i)
                    except ValueError:
                        break
                    diff = (out[0][1] - out[0][0]) / eps
                    errmsg = 'x-derivative for {}th bfun failed for {}'
                    self.assertAlmostEqual(diff,
                                           out[1][0][0],
                                           delta=1e-3,
                                           msg=errmsg.format(i, elem))
                    if elem.dim > 1:
                        diff = (out[0][3] - out[0][2]) / eps
                        errmsg = 'y-derivative for {}th bfun failed for {}'
                        self.assertAlmostEqual(diff,
                                               out[1][1][3],
                                               delta=1e-3,
                                               msg=errmsg.format(i, elem))
                    if elem.dim == 3:
                        diff = (out[0][5] - out[0][4]) / eps
                        errmsg = 'z-derivative for {}th bfun failed for {}'
                        self.assertAlmostEqual(diff,
                                               out[1][2][4],
                                               delta=1e-3,
                                               msg=errmsg.format(i, elem))
                    i += 1
Exemple #5
0
        if self.test_integrate_volume:
            # by Gauss theorem this integrates to one
            for itr in range(m.p.shape[0]):

                @LinearForm
                def linf(v, w):
                    return w.n[itr] * v

                b = asm(linf, basis)
                self.assertAlmostEqual(b @ m.p[itr, :], 1.0, places=5)


class NormalVectorTestTet(NormalVectorTestTri):

    case = (MeshTet(), ElementTetP1())


class NormalVectorTestTetP2(NormalVectorTestTri):

    case = (MeshTet(), ElementTetP2())
    test_integrate_volume = False


class NormalVectorTestQuad(NormalVectorTestTri):

    case = (MeshQuad(), ElementQuad1())


class NormalVectorTestQuadP(NormalVectorTestTri):
 def create_basis(self, m):
     e = ElementTetP1()
     return Basis(m, e)
Exemple #7
0
        with self.assertRaises(ValueError):
            m = MeshTri()
            e = ElementTetP2()
            basis = CellBasis(m, e)


@pytest.mark.parametrize(
    "mtype,e,nrefs,npoints",
    [
        (MeshTri, ElementTriP1(), 0, 10),
        (MeshTri, ElementTriP2(), 1, 10),
        (MeshTri, ElementTriP1(), 5, 10),
        (MeshTri, ElementTriP1(), 1, 3e5),
        (MeshTet, ElementTetP2(), 1, 10),
        (MeshTet, ElementTetP1(), 4, 10),
        (MeshTet, ElementTetP1(), 1, 3e4),
        (MeshQuad, ElementQuad1(), 1, 10),
        (MeshQuad, ElementQuad1(), 1, 3e5),
        (MeshHex, ElementHex1(), 1, 1e5),
        (MeshWedge1, ElementWedge1(), 0, 10),
    ]
)
def test_interpolator_probes(mtype, e, nrefs, npoints):

    m = mtype()
    if nrefs > 0:
        m = m.refined(nrefs)

    np.random.seed(0)
    X = np.random.rand(m.p.shape[0], int(npoints))
Exemple #8
0
        if self.test_integrate_volume:
            # by Gauss theorem this integrates to one
            for itr in range(m.p.shape[0]):

                @LinearForm
                def linf(v, w):
                    return w.n[itr] * v

                b = asm(linf, basis)
                self.assertAlmostEqual(b @ m.p[itr, :], 1.0, places=5)


class NormalVectorTestTet(NormalVectorTestTri):

    case = (MeshTet(), ElementTetP1())


class NormalVectorTestTetP2(NormalVectorTestTri):

    case = (MeshTet(), ElementTetP2())
    test_integrate_volume = False


class NormalVectorTestQuad(NormalVectorTestTri):

    case = (MeshQuad(), ElementQuad1())


class NormalVectorTestQuadP(NormalVectorTestTri):
Exemple #9
0

class TestElementQuadBFS(TestCase):
    def test_throw_index_error(self):
        """Tests that exception is thrown when i % 4 not in (0, 1, 2, 3)."""
        element = ElementQuadBFS()
        with self.assertRaises(ValueError):
            element.gdof(0, 0, -1)
        with self.assertRaises(ValueError):
            element.gdof(0, 0, 16)


@pytest.mark.parametrize("m,e,edg", [
    (MeshTri().refined(), ElementTriP1(), ElementTriDG),
    (MeshTri().refined(), ElementTriP2(), ElementTriDG),
    (MeshTet().refined(), ElementTetP1(), ElementTetDG),
    (MeshTet().refined(), ElementTetP2(), ElementTetDG),
    (MeshTri().refined(), ElementTriArgyris(), ElementTriDG),
    (MeshTri().refined(), ElementTriMorley(), ElementTriDG),
    (MeshTri().refined(), ElementTriHermite(), ElementTriDG),
    (MeshHex().refined(), ElementHex1(), ElementHexDG),
    (MeshQuad().refined(), ElementQuad1(), ElementQuadDG),
])
def test_dg_element(m, e, edg):

    edg = edg(e)

    @Functional
    def square(w):
        return w['random']**2
Exemple #10
0
        with self.assertRaises(ValueError):
            m = MeshTri()
            e = ElementTetP2()
            basis = InteriorBasis(m, e)


@pytest.mark.parametrize("mtype,e1,e2", [
    (MeshTri, ElementTriP1(), ElementTriP0()),
    (MeshTri, ElementTriP1(), ElementTriP1()),
    (MeshTri, ElementTriP2(), ElementTriP1()),
    (MeshTri, ElementTriP2(), ElementTriP2()),
    (MeshTri, ElementTriP2(), None),
    (MeshQuad, ElementQuad1(), ElementQuad0()),
    (MeshQuad, ElementQuad1(), ElementQuad1()),
    (MeshQuad, ElementQuad2(), ElementQuad2()),
    (MeshTet, ElementTetP1(), ElementTetP0()),
    (MeshTet, ElementTetP2(), ElementTetP2()),
    (MeshHex, ElementHex1(), ElementHex0()),
    (MeshHex, ElementHex1(), ElementHex1()),
    (MeshHex, ElementHex2(), ElementHex2()),
])
def test_trace(mtype, e1, e2):

    m = mtype().refined(3)

    # use the boundary where last coordinate is zero
    basis = FacetBasis(
        m, e1, facets=m.facets_satisfying(lambda x: x[x.shape[0] - 1] == 0.0))
    xfun = projection(lambda x: x[0], InteriorBasis(m, e1))
    nbasis, y = basis.trace(xfun,
                            lambda p: p[0:(p.shape[0] - 1)],
Exemple #11
0
                               places=10)

        if self.test_integrate_volume:
            # by Gauss theorem this integrates to one
            for itr in range(m.p.shape[0]):
                @LinearForm
                def linf(v, w):
                    return w.n[itr] * v

                b = asm(linf, basis)
                self.assertAlmostEqual(b @ m.p[itr, :], 1.0, places=5)


class NormalVectorTestTet(NormalVectorTestTri):

    case = (MeshTet(), ElementTetP1())


class NormalVectorTestTetP2(NormalVectorTestTri):

    case = (MeshTet(), ElementTetP2())
    test_integrate_volume = False


class NormalVectorTestQuad(NormalVectorTestTri):

    case = (MeshQuad(), ElementQuad1())


class NormalVectorTestQuadP(NormalVectorTestTri):