def test_data_feeder_multioutput_regression(self): X = np.matrix([[1, 2], [3, 4]]) y = np.array([[1, 2], [3, 4]]) df = data_feeder.DataFeeder(X, y, n_classes=0, batch_size=2) feed_dict_fn = df.get_feed_dict_fn(MockPlaceholder(name='input'), MockPlaceholder(name='output')) feed_dict = feed_dict_fn() self.assertAllClose(feed_dict['input'], [[3, 4], [1, 2]]) self.assertAllClose(feed_dict['output'], [[3, 4], [1, 2]])
def _setup_data_feeder(self, X, y): """Create data feeder, to sample inputs from dataset. If X and y are iterators, use StreamingDataFeeder. """ if hasattr(X, 'next'): assert hasattr(y, 'next') self._data_feeder = data_feeder.StreamingDataFeeder( X, y, self.n_classes, self.batch_size) else: self._data_feeder = data_feeder.DataFeeder(X, y, self.n_classes, self.batch_size)
def test_data_feeder_multioutput_classification(self): random.seed(42) X = np.matrix([[1, 2], [3, 4]]) y = np.array([[0, 1, 2], [2, 3, 4]]) df = data_feeder.DataFeeder(X, y, n_classes=5, batch_size=2) feed_dict_fn = df.get_feed_dict_fn(MockPlaceholder(name='input'), MockPlaceholder(name='output')) feed_dict = feed_dict_fn() self.assertAllClose(feed_dict['input'], [[3, 4], [1, 2]]) self.assertAllClose( feed_dict['output'], [[[0, 0, 1, 0, 0], [0, 0, 0, 1, 0], [0, 0, 0, 0, 1]], [[1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 0, 1, 0, 0]]])