def load(cls, file_name): config = deserialize_config(file_name) skil_server = Skil.from_config() experiment = get_experiment_by_id(skil_server, config['experiment_id']) result = Model(model_id=config['model_id'], experiment=experiment, create=False) result.name = config['model_name'] return result
def enter(): enemy.dead = 0 enemy.life = 100 gfw.world.init(['bg', 'card', 'state', 'ui']) gfw.world.remove(highscore) center = get_canvas_width() // 2, get_canvas_height() // 1.4 center2 = get_canvas_width() // 2, 250 hp = 150, 700 gfw.world.add(gfw.layer.bg, gobj.ImageObject(theme + '/black.png', center2)) gfw.world.add(gfw.layer.bg, gobj.ImageObject(theme + '/bg.png', center)) #gfw.world.add(gfw.layer.bg, gobj.ImageObject(theme + '/gaugefg.png', hp)) x, y = start_x, start_y idxs = [n + 1 for n in range(9)] #print('before:', idxs) #random.shuffle(idxs) #print('after: ', idxs) for i in range(0, 9, +3): print(idxs[i:i + 3]) for i in idxs: c = Pattern(i, (x, y), theme) gfw.world.add(gfw.layer.card, c) x += Pattern.WIDTH + PADDING - 100 if x > get_canvas_width(): x = start_x y -= Pattern.HEIGHT + PADDING - 100 icon = Skil(1, (150, 200), theme) gfw.world.add(gfw.layer.card, icon) pla = Player(1, (550, 450), theme) gfw.world.add(gfw.layer.card, pla) ene = Enemy(1, (150, 480), theme) gfw.world.add(gfw.layer.card, ene) global last_card last_card = None global TIME, font TIME = 1000 font = gfw.font.load(gobj.res('ENCR10B.TTF'), 20) highscore.load() global bg_music, flip_wav bg_music = load_music(gobj.res('bg1.mp3')) bg_music.set_volume(60) flip_wav = load_wav(gobj.res('pipe.wav')) bg_music.repeat_play()
def load(cls, file_name): config = deserialize_config(file_name) skil_server = Skil.from_config() experiment = get_experiment_by_id(skil_server, config['experiment_id']) transform_type = config['transform_type'] result = Transform(transform_id=config['transform_id'], transform_type=transform_type, experiment=experiment, create=False) result.name = config['transform_name'] return result
from skil import Skil, WorkSpace, Experiment, Model, Deployment from keras.datasets import mnist skil_server = Skil() work_space = WorkSpace(skil_server) experiment = Experiment(work_space) model = Model('model.pb', model_id='tf_model', experiment=experiment) deployment = Deployment(skil_server) service = model.deploy(deployment, input_names=['input'], output_names=['output']) (x_train, y_train), (x_test, y_test) = mnist.load_data() x_test = x_test.reshape(10000, 784) x_test = x_test.astype('float32') x_test /= 255 print(service.predict_single(x_test[0])) print(service.predict(x_test[:10]))
from skil import Skil, Service, utils from skil import get_workspace_by_id from skil import get_experiment_by_id from skil import get_model_by_id from skil import get_deployment_by_id from utils import annotate_image from time import time import cv2 skil_server = Skil( host = 'localhost', port = 9008, user_id = 'admin', password = '******' ) experiment = skil_server.api.list_all_experiments(skil_server.server_id)[0] workspace_id = experiment.model_history_id experiment_id = 'yolo-experiment-01' model_id = 'yolo-model-01' deployment_id = '0' work_space = get_workspace_by_id(skil_server, workspace_id) experiment = get_experiment_by_id(work_space, experiment_id) deployment = get_deployment_by_id(skil_server, deployment_id) model = get_model_by_id(experiment, model_id) service = Service( skil=skil_server,
#import skil_client # #configuration = skil_client.Configuration() #configuration.host = 'http://52.15.103.124:9008' #configuration.api_key['authorization'] = 'eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJhdWQiOiJTa2lsVXNlciIsInN1YiI6IntcInVzZXJJZFwiOlwiYWRtaW5cIixcInVzZXJOYW1lXCI6XCJhZG1pblwiLFwicm9sZVwiOlwiYWRtaW5cIixcInNjb3BlXCI6XCJhZG1pblwifSIsImlzcyI6IlNraWxBdXRoTWFuYWdlciIsImV4cCI6MTU4NjgyODcxMCwiaWF0IjoxNTU1MjkyNzEwfQ.vXXpr0kk9H8nMbkcM8sPWPJwuws1GGvI8SWc76qKvUo' #api_instance = skil_client.DefaultApi(skil_client.ApiClient(configuration)) #api_response = api_instance.predictimage("yolo", "default", "yolomodel", image='input.jpg') # from skil import Skil skil_server = Skil(host='52.15.103.124', password='******') from skil import WorkSpace, Experiment, Model work_space = WorkSpace(skil_server, name="Object detection project") experiment = Experiment(work_space, name="YOLO") model = Model('yolo_v2.pb', name='yolo_model', experiment=experiment) # from skil import Deployment deployment = Deployment(skil_server) service = model.deploy(deployment, scale=1, input_names=['input'], output_names=['output']) # #from skil.utils.yolo import annotate_image #import cv2 # #image = cv2.imread('input.jpg') #detection = service.detect_objects(image)
'host': 'localhost', # Edit this if using docker-machine. 'port': '9008', 'username': '******', 'password': '******', 'workspace_id': '', 'experiment_id': '', 'deployment_id': '' }, f) with open('.skil', 'r') as f: skil_conf = json.load(f) # Connect to SKIL and create an experiment for storing our model experiments. skil_server = Skil(host=skil_conf['host'], port=skil_conf['port'], user_id=skil_conf['username'], password=skil_conf['password']) work_space = None if skil_conf['workspace_id'] == '': work_space = WorkSpace(skil_server, name="Mnist Sample") skil_conf['workspace_id'] = work_space.id else: work_space = skil.get_workspace_by_id(None, skil_server, skil_conf['workspace_id']) experiment = None if skil_conf['experiment_id'] == '': experiment = Experiment(work_space, name='Simple MLP') skil_conf['experiment_id'] = experiment.id else: