def getmultiLBP(mat,step=50,block=100):

    N=mat.shape[0]
    idx=np.triu_indices(N)
    lbp = []

    for i,j in itertools.product(idx[0],idx[1]):
        lbp.append(feature.multiblock_lbp(mat,i,j,block,block))

    colNames = [ 'lbp_rad_%d' %(r) for r in range(len(lbp))]

    lbpSeries = pd.Series(data = preprocessing.scale(lbp), index=colNames)

    return lbpSeries
    def test_single_mblbp(self):

        # Create dummy matrix where first and fifth rectangles have greater
        # value than the central one. Therefore, the following bits
        # should be 1.
        test_img = np.zeros((9, 9), dtype='uint8')
        test_img[3:6, 3:6] = 1
        test_img[:3, :3] = 255
        test_img[6:, 6:] = 255

        # MB-LBP is filled in reverse order. So the first and fifth bits from
        # the end should be filled.
        correct_answer = 0b10001000

        int_img = integral_image(test_img)

        lbp_code = multiblock_lbp(int_img, 0, 0, 3, 3)

        np.testing.assert_equal(lbp_code, correct_answer)
Exemple #3
0
    def test_single_mblbp(self):

        # Create dummy matrix where first and fifth rectangles have greater
        # value than the central one. Therefore, the following bits
        # should be 1.
        test_img = np.zeros((9, 9), dtype='uint8')
        test_img[3:6, 3:6] = 1
        test_img[:3, :3] = 255
        test_img[6:, 6:] = 255

        # MB-LBP is filled in reverse order. So the first and fifth bits from
        # the end should be filled.
        correct_answer = 0b10001000

        int_img = integral_image(test_img)

        lbp_code = multiblock_lbp(int_img, 0, 0, 3, 3)

        np.testing.assert_equal(lbp_code, correct_answer)
Exemple #4
0
def histogram_feature(real_img, img, p_blocks, n_features, h_size, slider):
    xsize, ysize = img.shape
    histogram = np.zeros(h_size, dtype=float)
    y = 0
    x = 0
    while ((y + 3 * slider) <= ysize):
        while ((x + 3 * slider) <= xsize):
            lbp_code = multiblock_lbp(img, y, x, p_blocks, p_blocks)
            histogram[lbp_code] += 1
            x += slider
            #region_print(real_img, lbp_code, y+20, x+15, p_blocks, p_blocks)

        y += slider
        x = 0
    histogram = np.sort(histogram, axis=None)
    features = np.zeros(n_features, dtype=float)
    histogram[:h_size - n_features]
    features[0:n_features - 1] = histogram[h_size - (n_features - 1):]
    features[n_features - 1] = np.sum(histogram[:h_size - (n_features - 1)])
    max = np.amax(features)
    return features / max
Exemple #5
0
def calculate_lbp(img_path):
    # load img in grayscale
    img = load(img_path, as_gray=True)
    return multiblock_lbp(img, 0, 0, WIDTH, HEIGHT)
from __future__ import print_function
from skimage.feature import multiblock_lbp, draw_multiblock_lbp
import numpy as np
from numpy.testing import assert_equal
from skimage.transform import integral_image
from matplotlib import pyplot as plt
# Create test matrix where first and fifth rectangles starting
# from top left clockwise have greater value than the central one.
test_img = np.zeros((9, 9), dtype='uint8')
test_img[3:6, 3:6] = 1
test_img[:3, :3] = 50
test_img[6:, 6:] = 50

print(test_img)
# First and fifth bits should be filled. This correct value will
#  be compared to the computed one.
correct_answer = 0b10001000

int_img = integral_image(test_img)
print(int_img)

lbp_code = multiblock_lbp(int_img, 0, 0, 3, 3)
print(lbp_code)
img = draw_multiblock_lbp(test_img, 0, 0, 90, 90, lbp_code=lbp_code, alpha=0.5)

plt.imshow(img, interpolation='nearest')

plt.show()
Exemple #7
0
def getFeatures_old(I, Isegmented):

    Ilab = rgb2lab(I)
    Ilab[:, :, 0] *= 2.55
    Ilab[:, :, 1] += 127
    Ilab[:, :, 2] += 128

    I05 = rescale(I, 0.5)
    I025 = rescale(I, 0.25)
    I0125 = rescale(I, 0.125)
    Ilab05 = rescale(Ilab, 0.5)
    Ilab025 = rescale(Ilab, 0.25)
    Ilab0125 = rescale(Ilab, 0.125)
    Isegmented05 = rescale(Isegmented, 0.5)
    Isegmented025 = rescale(Isegmented, 0.25)
    Isegmented0125 = rescale(Isegmented, 0.125)
    Xstack = []
    Xnstack = []

    options = {'b': [
        {'name': 'basicgeo', 'options': {'show': False}},  # basic geometric features
        {'name': 'hugeo', 'options': {'show': False}},  # Hu moments
        {'name': 'flusser', 'options': {'show': False}},  # Flusser moments
        {'name': 'fourierdes', 'options': {'show': False, 'Nfourierdes': 12}},  # Fourier descriptors
    ]}

    Xtmp, Xntmp = Bfx_geo(Isegmented, options)
    Xstack.extend(Xtmp[0])
    Xnstack.extend(Xntmp)

    options = {'dharalick': [3, 6, 12]}  # # pixels distance for coocurrence
    # options = {'dharalick': 3}  # 3 pixels distance for coocurrence
    J = rgb2gray(I.astype(float))
    Xtmp, Xntmp = Bfx_haralick(J, Isegmented, options)  # Haralick features
    Xntmp = [name + '_gray' for name in Xntmp]

    Xstack.extend(Xtmp[0])
    Xnstack.extend(Xntmp)

    Xtmp, Xntmp = Bfx_haralick(Ilab[:, :, 0], Isegmented, options)  # Haralick features
    Xntmp = [name + '_L*' for name in Xntmp]

    Xstack.extend(Xtmp[0])
    Xnstack.extend(Xntmp)

    Xtmp, Xntmp = Bfx_haralick(Ilab[:, :, 1], Isegmented, options)  # Haralick features
    Xntmp = [name + '_A*' for name in Xntmp]

    Xstack.extend(Xtmp[0])
    Xnstack.extend(Xntmp)

    Xtmp, Xntmp = Bfx_haralick(Ilab[:, :, 2], Isegmented, options)  # Haralick features
    Xntmp = [name + '_B*' for name in Xntmp]

    Xstack.extend(Xtmp[0])
    Xnstack.extend(Xntmp)

    a, _ = histogram(np.round(rgb2gray(I.astype(float))))
    a = a / a.sum()

    Xtmp = [entr(a).sum(axis=0)]
    Xntmp = ['Entropy']

    Xstack.extend(Xtmp)
    Xnstack.extend(Xntmp)

    count = float(I[:, :, 0].size)

    mean_red = np.sum(I[:, :, 0])
    mean_green = np.sum(I[:, :, 1])
    mean_blue = np.sum(I[:, :, 2])

    Xtmp = [mean_red / count, mean_green / count, mean_blue / count]
    Xntmp = ['mean_red', 'mean_green', 'mean_blue']

    Xstack.extend(Xtmp)
    Xnstack.extend(Xntmp)

    Xstack.extend(Xtmp)
    Xnstack.extend(Xntmp)

    mean_l = np.sum(Ilab[:, :, 0])
    mean_a = np.sum(Ilab[:, :, 1])
    mean_b = np.sum(Ilab[:, :, 2])

    Xtmp = [mean_l / count, mean_a / count, mean_b / count]
    Xntmp = ['mean_l', 'mean_a', 'mean_b']

    Xstack.extend(Xtmp)
    Xnstack.extend(Xntmp)

    options = {
        'weight': 0,
        'vdiv': 3,
        'hdiv': 3,
        'samples': 8,
        'mappingtype': 'nri_uniform'
    }

    Xtmp, Xntmp = Bfx_lbp(I[:, :, 0], Isegmented, options)
    Xntmp = [name + '_red_normal' for name in Xntmp]

    Xstack.extend(Xtmp[0])
    Xnstack.extend(Xntmp)

    Xtmp, Xntmp = Bfx_lbp(I[:, :, 1], Isegmented, options)
    Xntmp = [name + '_green_normal' for name in Xntmp]

    Xstack.extend(Xtmp[0])
    Xnstack.extend(Xntmp)

    Xtmp, Xntmp = Bfx_lbp(I[:, :, 2], Isegmented, options)
    Xntmp = [name + '_blue_normal' for name in Xntmp]

    Xstack.extend(Xtmp[0])
    Xnstack.extend(Xntmp)

    Xtmp, Xntmp = Bfx_lbp(rgb2gray(I), Isegmented, options)
    Xntmp = [name + '_gray_normal' for name in Xntmp]

    Xstack.extend(Xtmp[0])
    Xnstack.extend(Xntmp)

    Xtmp, Xntmp = Bfx_lbp(Ilab[:, :, 0], Isegmented, options)
    Xntmp = [name + '_L*_normal' for name in Xntmp]

    Xstack.extend(Xtmp[0])
    Xnstack.extend(Xntmp)

    Xtmp, Xntmp = Bfx_lbp(Ilab[:, :, 1], Isegmented, options)
    Xntmp = [name + '_A*_normal' for name in Xntmp]

    Xstack.extend(Xtmp[0])
    Xnstack.extend(Xntmp)

    Xtmp, Xntmp = Bfx_lbp(Ilab[:, :, 2], Isegmented, options)
    Xntmp = [name + '_B*_normal' for name in Xntmp]

    Xstack.extend(Xtmp[0])
    Xnstack.extend(Xntmp)

    # Multiblock_LBP - RGB - normal
    ILabel = label(Isegmented)
    for region in regionprops(ILabel):
        minr, minc, maxr, maxc = region.bbox

    Xtmp = multiblock_lbp(I[:, :, 0], minr, minc, int((maxc - minc) / 3), int((maxr - minr) / 3))
    Xntmp = 'multiblock_lbp_red_normal'

    Xstack.extend([Xtmp])
    Xnstack.extend([Xntmp])

    Xtmp = multiblock_lbp(I[:, :, 1], minr, minc, int((maxc - minc) / 3), int((maxr - minr) / 3))
    Xntmp = 'multiblock_lbp_green_normal'

    Xstack.extend([Xtmp])
    Xnstack.extend([Xntmp])

    Xtmp = multiblock_lbp(I[:, :, 2], minr, minc, int((maxc - minc) / 3), int((maxr - minr) / 3))
    Xntmp = 'multiblock_lbp_blue_normal'

    Xstack.extend([Xtmp])
    Xnstack.extend([Xntmp])

    # Multiblock_LBP - Gray - normal
    Xtmp = multiblock_lbp(rgb2gray(I), minr, minc, int((maxc - minc) / 3), int((maxr - minr) / 3))
    Xntmp = 'multiblock_lbp_gray_normal'

    Xstack.extend([Xtmp])
    Xnstack.extend([Xntmp])

    # Multiblock_LBP - LBP - normal
    Xtmp = multiblock_lbp(Ilab[:, :, 0], minr, minc, int((maxc - minc) / 3), int((maxr - minr) / 3))
    Xntmp = 'multiblock_lbp_L*_normal'

    Xstack.extend([Xtmp])
    Xnstack.extend([Xntmp])

    Xtmp = multiblock_lbp(Ilab[:, :, 1], minr, minc, int((maxc - minc) / 3), int((maxr - minr) / 3))
    Xntmp = 'multiblock_lbp_A*_normal'

    Xstack.extend([Xtmp])
    Xnstack.extend([Xntmp])

    Xtmp = multiblock_lbp(Ilab[:, :, 2], minr, minc, int((maxc - minc) / 3), int((maxr - minr) / 3))
    Xntmp = 'multiblock_lbp_B*_normal'

    Xstack.extend([Xtmp])
    Xnstack.extend([Xntmp])

    # Multiblock_LBP - RGB - 0.5
    ILabel = label(Isegmented05)
    for region in regionprops(ILabel):
        minr, minc, maxr, maxc = region.bbox

    Xtmp = multiblock_lbp(I05[:, :, 0], minr, minc, int((maxc - minc) / 3), int((maxr - minr) / 3))
    Xntmp = 'multiblock_lbp_red_0.5'

    Xstack.extend([Xtmp])
    Xnstack.extend([Xntmp])

    Xtmp = multiblock_lbp(I05[:, :, 1], minr, minc, int((maxc - minc) / 3), int((maxr - minr) / 3))
    Xntmp = 'multiblock_lbp_green_0.5'

    Xstack.extend([Xtmp])
    Xnstack.extend([Xntmp])

    Xtmp = multiblock_lbp(I05[:, :, 2], minr, minc, int((maxc - minc) / 3), int((maxr - minr) / 3))
    Xntmp = 'multiblock_lbp_blue_0.5'

    Xstack.extend([Xtmp])
    Xnstack.extend([Xntmp])

    # Multiblock_LBP - Gray - normal
    Xtmp = multiblock_lbp(rgb2gray(I05), minr, minc, int((maxc - minc) / 3), int((maxr - minr) / 3))
    Xntmp = 'multiblock_lbp_gray_0.5'

    Xstack.extend([Xtmp])
    Xnstack.extend([Xntmp])

    # Multiblock_LBP - LBP - normal
    Xtmp = multiblock_lbp(Ilab05[:, :, 0], minr, minc, int((maxc - minc) / 3), int((maxr - minr) / 3))
    Xntmp = 'multiblock_lbp_L*_0.5'

    Xstack.extend([Xtmp])
    Xnstack.extend([Xntmp])

    Xtmp = multiblock_lbp(Ilab05[:, :, 1], minr, minc, int((maxc - minc) / 3), int((maxr - minr) / 3))
    Xntmp = 'multiblock_lbp_A*_0.5'

    Xstack.extend([Xtmp])
    Xnstack.extend([Xntmp])

    Xtmp = multiblock_lbp(Ilab05[:, :, 2], minr, minc, int((maxc - minc) / 3), int((maxr - minr) / 3))
    Xntmp = 'multiblock_lbp_B*_0.5'

    Xstack.extend([Xtmp])
    Xnstack.extend([Xntmp])

    # Multiblock_LBP - RGB - 0.25
    ILabel = label(Isegmented025)
    for region in regionprops(ILabel):
        minr, minc, maxr, maxc = region.bbox

    Xtmp = multiblock_lbp(I025[:, :, 0], minr, minc, int((maxc - minc) / 3), int((maxr - minr) / 3))
    Xntmp = 'multiblock_lbp_red_0.25'

    Xstack.extend([Xtmp])
    Xnstack.extend([Xntmp])

    Xtmp = multiblock_lbp(I025[:, :, 1], minr, minc, int((maxc - minc) / 3), int((maxr - minr) / 3))
    Xntmp = 'multiblock_lbp_green_0.25'

    Xstack.extend([Xtmp])
    Xnstack.extend([Xntmp])

    Xtmp = multiblock_lbp(I025[:, :, 2], minr, minc, int((maxc - minc) / 3), int((maxr - minr) / 3))
    Xntmp = 'multiblock_lbp_blue_0.25'

    Xstack.extend([Xtmp])
    Xnstack.extend([Xntmp])

    # Multiblock_LBP - Gray - normal
    Xtmp = multiblock_lbp(rgb2gray(I025), minr, minc, int((maxc - minc) / 3), int((maxr - minr) / 3))
    Xntmp = 'multiblock_lbp_gray_0.25'

    Xstack.extend([Xtmp])
    Xnstack.extend([Xntmp])

    # Multiblock_LBP - LBP - normal
    Xtmp = multiblock_lbp(Ilab025[:, :, 0], minr, minc, int((maxc - minc) / 3), int((maxr - minr) / 3))
    Xntmp = 'multiblock_lbp_L*_0.25'

    Xstack.extend([Xtmp])
    Xnstack.extend([Xntmp])

    Xtmp = multiblock_lbp(Ilab025[:, :, 1], minr, minc, int((maxc - minc) / 3), int((maxr - minr) / 3))
    Xntmp = 'multiblock_lbp_A*_0.25'

    Xstack.extend([Xtmp])
    Xnstack.extend([Xntmp])

    Xtmp = multiblock_lbp(Ilab025[:, :, 2], minr, minc, int((maxc - minc) / 3), int((maxr - minr) / 3))
    Xntmp = 'multiblock_lbp_B*_0.25'

    Xstack.extend([Xtmp])
    Xnstack.extend([Xntmp])

    # Multiblock_LBP - RGB - 0.125
    ILabel = label(Isegmented0125)
    for region in regionprops(ILabel):
        minr, minc, maxr, maxc = region.bbox

    Xtmp = multiblock_lbp(I0125[:, :, 0], minr, minc, int((maxc - minc) / 3), int((maxr - minr) / 3))
    Xntmp = 'multiblock_lbp_red_0.125'

    Xstack.extend([Xtmp])
    Xnstack.extend([Xntmp])

    Xtmp = multiblock_lbp(I0125[:, :, 1], minr, minc, int((maxc - minc) / 3), int((maxr - minr) / 3))
    Xntmp = 'multiblock_lbp_green_0.125'

    Xstack.extend([Xtmp])
    Xnstack.extend([Xntmp])

    Xtmp = multiblock_lbp(I0125[:, :, 2], minr, minc, int((maxc - minc) / 3), int((maxr - minr) / 3))
    Xntmp = 'multiblock_lbp_blue_0.125'

    Xstack.extend([Xtmp])
    Xnstack.extend([Xntmp])

    # Multiblock_LBP - Gray - normal
    Xtmp = multiblock_lbp(rgb2gray(I0125), minr, minc, int((maxc - minc) / 3), int((maxr - minr) / 3))
    Xntmp = 'multiblock_lbp_gray_0.125'

    Xstack.extend([Xtmp])
    Xnstack.extend([Xntmp])

    # Multiblock_LBP - LBP - normal
    Xtmp = multiblock_lbp(Ilab0125[:, :, 0], minr, minc, int((maxc - minc) / 3), int((maxr - minr) / 3))
    Xntmp = 'multiblock_lbp_L*_0.125'

    Xstack.extend([Xtmp])
    Xnstack.extend([Xntmp])

    Xtmp = multiblock_lbp(Ilab0125[:, :, 1], minr, minc, int((maxc - minc) / 3), int((maxr - minr) / 3))
    Xntmp = 'multiblock_lbp_A*_0.125'

    Xstack.extend([Xtmp])
    Xnstack.extend([Xntmp])

    Xtmp = multiblock_lbp(Ilab0125[:, :, 2], minr, minc, int((maxc - minc) / 3), int((maxr - minr) / 3))
    Xntmp = 'multiblock_lbp_B*_0.125'

    Xstack.extend([Xtmp])
    Xnstack.extend([Xntmp])

    return Xstack, Xnstack
from skimage.transform import integral_image

# Create test matrix where first and fifth rectangles starting
# from top left clockwise have greater value than the central one.
test_img = np.zeros((9, 9), dtype='uint8')
test_img[3:6, 3:6] = 1
test_img[:3, :3] = 50
test_img[6:, 6:] = 50

# First and fifth bits should be filled. This correct value will
#  be compared to the computed one.
correct_answer = 0b10001000

int_img = integral_image(test_img)

lbp_code = multiblock_lbp(int_img, 0, 0, 3, 3)

assert_equal(correct_answer, lbp_code)

######################################################################
# Now let's apply the operator to a real image and see how the visualization
# works.

from skimage import data
from matplotlib import pyplot as plt
from skimage.feature import draw_multiblock_lbp

test_img = data.coins()

int_img = integral_image(test_img)
Exemple #9
0
def compareScikit():
    test_img = np.round(np.random.rand(36, 36) * 256)
    int_img = integral_image(test_img)
    matriks = genAverageMat(test_img, 2, 3)
    mat_lbp = lbpCompare(matriks)
    lbp_2 = multiblock_lbp(int_img, 0, 9, 3, 2)
Exemple #10
0
from skimage import data
from matplotlib import pyplot as plt
from skimage.transform import integral_image
from skimage.feature import multiblock_lbp
from skimage.feature import draw_multiblock_lbp

test_img = data.coins()

plt.imshow(test_img, interpolation='nearest')

plt.show()

int_img = integral_image(test_img)

lbp_code = multiblock_lbp(int_img, 0, 0, 190, 90)

img = draw_multiblock_lbp(test_img,
                          0,
                          0,
                          190,
                          90,
                          lbp_code=lbp_code,
                          alpha=0.5)

plt.imshow(img, interpolation='nearest')

plt.show()