Exemple #1
0
def test_structuring_element8():
    # check the output for a custom structuring element

    r = np.array([[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 255, 0, 0, 0],
                  [0, 0, 255, 255, 255, 0], [0, 0, 0, 255, 255, 0],
                  [0, 0, 0, 0, 0, 0]])

    # 8-bit
    image = np.zeros((6, 6), dtype=np.uint8)
    image[2, 2] = 255
    elem = np.asarray([[1, 1, 0], [1, 1, 1], [0, 0, 1]], dtype=np.uint8)
    out = np.empty_like(image)
    mask = np.ones(image.shape, dtype=np.uint8)

    rank.maximum(image=image,
                 selem=elem,
                 out=out,
                 mask=mask,
                 shift_x=1,
                 shift_y=1)
    assert_array_equal(r, out)

    # 16-bit
    image = np.zeros((6, 6), dtype=np.uint16)
    image[2, 2] = 255
    out = np.empty_like(image)

    rank.maximum(image=image,
                 selem=elem,
                 out=out,
                 mask=mask,
                 shift_x=1,
                 shift_y=1)
    assert_array_equal(r, out)
def test_structuring_element8():
    # check the output for a custom structuring element

    r = np.array([[0, 0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0, 0],
                  [0, 0, 255, 0, 0, 0],
                  [0, 0, 255, 255, 255, 0],
                  [0, 0, 0, 255, 255, 0],
                  [0, 0, 0, 0, 0, 0]])

    # 8-bit
    image = np.zeros((6, 6), dtype=np.uint8)
    image[2, 2] = 255
    elem = np.asarray([[1, 1, 0], [1, 1, 1], [0, 0, 1]], dtype=np.uint8)
    out = np.empty_like(image)
    mask = np.ones(image.shape, dtype=np.uint8)

    rank.maximum(image=image, selem=elem, out=out, mask=mask,
                 shift_x=1, shift_y=1)
    assert_array_equal(r, out)

    # 16-bit
    image = np.zeros((6, 6), dtype=np.uint16)
    image[2, 2] = 255
    out = np.empty_like(image)

    rank.maximum(image=image, selem=elem, out=out, mask=mask,
                 shift_x=1, shift_y=1)
    assert_array_equal(r, out)
Exemple #3
0
def test_smallest_selem16():
    # check that min, max and mean returns identity if structuring element
    # contains only central pixel

    image = np.zeros((5, 5), dtype=np.uint16)
    out = np.zeros_like(image)
    mask = np.ones_like(image, dtype=np.uint8)
    image[2, 2] = 255
    image[2, 3] = 128
    image[1, 2] = 16

    elem = np.array([[1]], dtype=np.uint8)
    rank.mean(image=image,
              selem=elem,
              out=out,
              mask=mask,
              shift_x=0,
              shift_y=0)
    assert_array_equal(image, out)
    rank.minimum(image=image,
                 selem=elem,
                 out=out,
                 mask=mask,
                 shift_x=0,
                 shift_y=0)
    assert_array_equal(image, out)
    rank.maximum(image=image,
                 selem=elem,
                 out=out,
                 mask=mask,
                 shift_x=0,
                 shift_y=0)
    assert_array_equal(image, out)
    def split_object(self, labeled_image):
        """ split object when it's necessary
        """
        
        labeled_image = labeled_image.astype(np.uint16)

        labeled_mask = np.zeros_like(labeled_image, dtype=np.uint16)
        labeled_mask[labeled_image != 0] = 1

        #ift structuring element about center point. This only affects eccentric structuring elements (i.e. selem with even num===============================
       
        labeled_image = skr.median(labeled_image, skm.disk(4))
        labeled_mask = np.zeros_like(labeled_image, dtype=np.uint16)
        labeled_mask[labeled_image != 0] = 1
        distance = scipym.distance_transform_edt(labeled_image).astype(np.uint16)
        #=======================================================================
        # binary = np.zeros(np.shape(labeled_image))
        # binary[labeled_image > 0] = 1
        #=======================================================================
        distance = skr.mean(distance, skm.disk(15))
         
        l_max = skr.maximum(distance, skm.disk(5))
        #l_max = skf.peak_local_max(distance, indices=False,labels=labeled_image, footprint=np.ones((3,3)))
        l_max = l_max - distance <= 0
        
        l_max = skr.maximum(l_max.astype(np.uint8), skm.disk(6))
        
       
        
        marker = ndimage.label(l_max)[0]
        split_image = skm.watershed(-distance, marker)
        
        split_image[split_image[0,0] == split_image] = 0
        
        return split_image
Exemple #5
0
def test_empty_selem():
    # check that min, max and mean returns zeros if structuring element is
    # empty

    image = np.zeros((5, 5), dtype=np.uint16)
    out = np.zeros_like(image)
    mask = np.ones_like(image, dtype=np.uint8)
    res = np.zeros_like(image)
    image[2, 2] = 255
    image[2, 3] = 128
    image[1, 2] = 16

    elem = np.array([[0, 0, 0], [0, 0, 0]], dtype=np.uint8)

    rank.mean(image=image,
              selem=elem,
              out=out,
              mask=mask,
              shift_x=0,
              shift_y=0)
    assert_array_equal(res, out)
    rank.minimum(image=image,
                 selem=elem,
                 out=out,
                 mask=mask,
                 shift_x=0,
                 shift_y=0)
    assert_array_equal(res, out)
    rank.maximum(image=image,
                 selem=elem,
                 out=out,
                 mask=mask,
                 shift_x=0,
                 shift_y=0)
    assert_array_equal(res, out)
Exemple #6
0
def test_compare_with_cmorph_dilate():
    # compare the result of maximum filter with dilate

    image = (np.random.rand(100, 100) * 256).astype(np.uint8)
    out = np.empty_like(image)
    mask = np.ones(image.shape, dtype=np.uint8)

    for r in range(1, 20, 1):
        elem = np.ones((r, r), dtype=np.uint8)
        rank.maximum(image=image, selem=elem, out=out, mask=mask)
        cm = cmorph._dilate(image=image, selem=elem)
        assert_array_equal(out, cm)
def test_compare_with_cmorph_dilate():
    # compare the result of maximum filter with dilate

    image = (np.random.random((100, 100)) * 256).astype(np.uint8)
    out = np.empty_like(image)
    mask = np.ones(image.shape, dtype=np.uint8)

    for r in range(1, 20, 1):
        elem = np.ones((r, r), dtype=np.uint8)
        rank.maximum(image=image, selem=elem, out=out, mask=mask)
        cm = cmorph.dilate(image=image, selem=elem)
        assert_array_equal(out, cm)
Exemple #8
0
def test_percentile_max():
    # check that percentile p0 = 1 is identical to local max
    img = data.camera()
    img16 = img.astype(np.uint16)
    selem = disk(15)
    # check for 8bit
    img_p0 = rank.percentile(img, selem=selem, p0=1.)
    img_max = rank.maximum(img, selem=selem)
    assert_array_equal(img_p0, img_max)
    # check for 16bit
    img_p0 = rank.percentile(img16, selem=selem, p0=1.)
    img_max = rank.maximum(img16, selem=selem)
    assert_array_equal(img_p0, img_max)
Exemple #9
0
def test_percentile_max():
    # check that percentile p0 = 1 is identical to local max
    img = data.camera()
    img16 = img.astype(np.uint16)
    selem = disk(15)
    # check for 8bit
    img_p0 = rank.percentile(img, selem=selem, p0=1.)
    img_max = rank.maximum(img, selem=selem)
    assert_array_equal(img_p0, img_max)
    # check for 16bit
    img_p0 = rank.percentile(img16, selem=selem, p0=1.)
    img_max = rank.maximum(img16, selem=selem)
    assert_array_equal(img_p0, img_max)
Exemple #10
0
def substract_background(data, radius, background='mean', show=0):
    dmin, dmax = data.min(), data.max()
    tmp = ((data - dmin) / (dmax - dmin) * 255).astype(np.uint8)
    lforeground = rank.minimum(tmp, disk(radius // 2))

    if background == 'mean':
        lbackground = rank.mean(lforeground, disk(radius * 4)).astype(int)
    elif background == 'median':
        lbackground = rank.median(lforeground, disk(radius * 4)).astype(int)
    elif background == 'maximum':
        lbackground = rank.maximum(lforeground, disk(radius * 4)).astype(int)
    else:
        lbackground = rank.modal(lforeground, disk(radius * 4)).astype(int)

    rdata = (lforeground - lbackground)

    if show > 2:
        fig, axes = plt.subplots(ncols=3, nrows=1, figsize=(30, 10))
        for ax, im, title in zip(axes, [lforeground, lbackground, rdata],
                                 ['Foreground', 'Background', 'Substraction']):
            ax.imshow(im, 'optiona')
            ax.set_xticks([])
            ax.set_yticks([])
            ax.set_title(title)
        plt.show()

    return rdata
Exemple #11
0
def test_16bit():
    image = np.zeros((21, 21), dtype=np.uint16)
    selem = np.ones((3, 3), dtype=np.uint8)

    for bitdepth in range(17):
        value = 2**bitdepth - 1
        image[10, 10] = value
        assert rank.minimum(image, selem)[10, 10] == 0
        assert rank.maximum(image, selem)[10, 10] == value
        assert rank.mean(image, selem)[10, 10] == int(value / selem.size)
Exemple #12
0
def test_16bit():
    image = np.zeros((21, 21), dtype=np.uint16)
    selem = np.ones((3, 3), dtype=np.uint8)

    for bitdepth in range(17):
        value = 2 ** bitdepth - 1
        image[10, 10] = value
        assert rank.minimum(image, selem)[10, 10] == 0
        assert rank.maximum(image, selem)[10, 10] == value
        assert rank.mean(image, selem)[10, 10] == int(value / selem.size)
def test_smallest_selem16():
    # check that min, max and mean returns identity if structuring element
    # contains only central pixel

    image = np.zeros((5, 5), dtype=np.uint16)
    out = np.zeros_like(image)
    mask = np.ones_like(image, dtype=np.uint8)
    image[2, 2] = 255
    image[2, 3] = 128
    image[1, 2] = 16

    elem = np.array([[1]], dtype=np.uint8)
    rank.mean(image=image, selem=elem, out=out, mask=mask,
              shift_x=0, shift_y=0)
    assert_array_equal(image, out)
    rank.minimum(image=image, selem=elem, out=out, mask=mask,
                 shift_x=0, shift_y=0)
    assert_array_equal(image, out)
    rank.maximum(image=image, selem=elem, out=out, mask=mask,
                 shift_x=0, shift_y=0)
    assert_array_equal(image, out)
def test_empty_selem():
    # check that min, max and mean returns zeros if structuring element is empty

    image = np.zeros((5, 5), dtype=np.uint16)
    out = np.zeros_like(image)
    mask = np.ones_like(image, dtype=np.uint8)
    res = np.zeros_like(image)
    image[2, 2] = 255
    image[2, 3] = 128
    image[1, 2] = 16

    elem = np.array([[0, 0, 0], [0, 0, 0]], dtype=np.uint8)

    rank.mean(image=image, selem=elem, out=out, mask=mask,
              shift_x=0, shift_y=0)
    assert_array_equal(res, out)
    rank.minimum(image=image, selem=elem, out=out, mask=mask,
                 shift_x=0, shift_y=0)
    assert_array_equal(res, out)
    rank.maximum(image=image, selem=elem, out=out, mask=mask,
                 shift_x=0, shift_y=0)
    assert_array_equal(res, out)
    def run(self, workspace):
        cell_object = workspace.object_set.get_objects(self.primary_objects.value)
        cell_labeled = cell_object.get_segmented()
        cell_image = cell_object.get_parent_image()

        cell_image = (cell_image * 1000).astype(np.uint16)
        #        object_count = cell_labeled.max()
        maxi = skr.maximum(cell_image.astype(np.uint8), skm.disk(10))
        local_max = maxi - cell_image < 10

        local_max_labelize, object_count = scipy.ndimage.label(local_max, np.ones((3, 3), bool))
        histo_local_max, not_use = np.histogram(local_max_labelize, range(object_count + 2))
        old = local_max_labelize.copy()

        # filter in intensity mean
        # =======================================================================
        #
        # regionprops_result = skmes.regionprops(local_max_labelize, intensity_image=cell_image)
        #
        # for region in regionprops_result:
        #     if region["mean_intensity"]
        # =======================================================================

        # filter on size
        for i in range(object_count + 1):
            value = histo_local_max[i]
            if value > self.range_size.max or value < self.range_size.min:
                local_max_labelize[local_max_labelize == i] = 0

        # split granule for each cell
        cell_labeled = skm.label(cell_labeled)
        cell_count = np.max(cell_labeled)

        for cell_object_value in range(1, cell_count):
            cell_object_mask = cell_labeled == cell_object_value
            granule_in_cell = np.logical_and(cell_object_mask, local_max_labelize)
            granule_in_cell = skm.label(granule_in_cell)
            # ===================================================================
            # plt.imshow(granule_in_cell + cell_object_mask)
            # plt.show()
            # ===================================================================
        #
        # get the filename
        #
        measurements = workspace.measurements
        file_name_feature = self.source_file_name_feature
        filename = measurements.get_current_measurement("Image", file_name_feature)
        print "filename = ", filename
.. note::

    `skimage.dilate` and `skimage.erode` are equivalent filters (see below for
    comparison).

Here is an example of the classical morphological gray-level filters: opening,
closing and morphological gradient.

"""

from skimage.filter.rank import maximum, minimum, gradient

noisy_image = img_as_ubyte(data.camera())

closing = maximum(minimum(noisy_image, disk(5)), disk(5))
opening = minimum(maximum(noisy_image, disk(5)), disk(5))
grad = gradient(noisy_image, disk(5))

# display results
fig = plt.figure(figsize=[10, 7])

plt.subplot(2, 2, 1)
plt.imshow(noisy_image, cmap=plt.cm.gray)
plt.title('Original')
plt.axis('off')

plt.subplot(2, 2, 2)
plt.imshow(closing, cmap=plt.cm.gray)
plt.title('Gray-level closing')
plt.axis('off')
.. note::

    `skimage.dilate` and `skimage.erode` are equivalent filters (see below for
    comparison).

Here is an example of the classical morphological greylevel filters: opening,
closing and morphological gradient.

"""

from skimage.filter.rank import maximum, minimum, gradient

ima = data.camera()

closing = maximum(minimum(ima, disk(5)), disk(5))
opening = minimum(maximum(ima, disk(5)), disk(5))
grad = gradient(ima, disk(5))

# display results
fig = plt.figure(figsize=[10, 7])
plt.subplot(2, 2, 1)
plt.imshow(ima, cmap=plt.cm.gray)
plt.xlabel('original')
plt.subplot(2, 2, 2)
plt.imshow(closing, cmap=plt.cm.gray)
plt.xlabel('greylevel closing')
plt.subplot(2, 2, 3)
plt.imshow(opening, cmap=plt.cm.gray)
plt.xlabel('greylevel opening')
plt.subplot(2, 2, 4)
Exemple #18
0
    plt.imshow(out_pile)
    try:
        io.imsave('C:/users/attialex/Desktop/out_pile_3.png',
                  skimage.img_as_uint(out_pile))
        io.imsave('C:/users/attialex/Desktop/out_cell_3.png',
                  skimage.img_as_uint(out_cell))
    except Exception as e:
        print e.message

    try:
        bg = normalize3Chan(imex * 1.)

        fg_c = normalize3Chan(out_cell)
        fg_p = normalize3Chan(out_pile)
        fg_c[:, :, 0] = 0
        fg_c[:, :, 2] = 0

        s1 = cv2.addWeighted(bg, .8, fg_c, .2, 0)
        cv2.imshow('cell', s1)
        s2 = cv2.addWeighted(bg, .8, fg_p, .2, 0)
        cv2.imshow('pile', s2)
        cv2.waitKey()
    except Exception as e:
        print e.message

    max_pile = maximum(out_pile, np.ones((40, 40)))
    unique_pile = np.unique(max_pile)

    max_cell = maximum(out_cell, np.ones((40, 40)))
    unique_cell = np.unique(max_cell)
    plt.show()
    def run(self, workspace):
        '''Run the algorithm on one image set'''
        #
        # Get the image as a binary image
        #
        image_set = workspace.image_set
        image = image_set.get_image(self.image_name.value, must_be_binary=True)
        mask = image.pixel_data
        if image.has_mask:
            mask = mask & image.mask
        angle_count = self.angle_count.value
        #
        # We collect the i,j and angle of pairs of points that
        # are 3-d adjacent after erosion.
        #
        # i - the i coordinate of each point found after erosion
        # j - the j coordinate of each point found after erosion
        # a - the angle of the structuring element for each point found
        #
        i = np.zeros(0, int)
        j = np.zeros(0, int)
        a = np.zeros(0, int)

        ig, jg = np.mgrid[0:mask.shape[0], 0:mask.shape[1]]
        #this_idx = 0
        for angle_number in range(angle_count):
            angle = float(angle_number) * np.pi / float(angle_count)
            strel = self.get_diamond(angle)
            erosion = binary_erosion(mask, strel)
            #
            # Accumulate the count, i, j and angle for all foreground points
            # in the erosion
            #
            this_count = np.sum(erosion)
            i = np.hstack((i, ig[erosion]))
            j = np.hstack((j, jg[erosion]))
            a = np.hstack((a, np.ones(this_count, float) * angle))
        #
        # Find connections based on distances, not adjacency
        #
        first, second = self.find_adjacent_by_distance(i, j, a)
        #
        # Do all connected components.
        #
        if len(first) > 0:
            ij_labels = all_connected_components(first, second) + 1
            nlabels = np.max(ij_labels)
            label_indexes = np.arange(1, nlabels + 1)
            #
            # Compute the measurements
            #
            center_x = fix(mean_of_labels(j, ij_labels, label_indexes))
            center_y = fix(mean_of_labels(i, ij_labels, label_indexes))
            #
            # The angles are wierdly complicated because of the wrap-around.
            # You can imagine some horrible cases, like a circular patch of
            # "linear object" in which all angles are represented or a gentle "U"
            # curve.
            #
            # For now, I'm going to use the following heuristic:
            #
            # Compute two different "angles". The angles of one go
            # from 0 to 180 and the angles of the other go from -90 to 90.
            # Take the variance of these from the mean and
            # choose the representation with the lowest variance.
            #
            # An alternative would be to compute the variance at each possible
            # dividing point. Another alternative would be to actually trace through
            # the connected components - both overkill for such an inconsequential
            # measurement I hope.
            #
            angles = fix(mean_of_labels(a, ij_labels, label_indexes))
            vangles = fix(
                mean_of_labels((a - angles[ij_labels - 1])**2, ij_labels,
                               label_indexes))
            aa = a.copy()
            aa[a > np.pi / 2] -= np.pi
            aangles = fix(mean_of_labels(aa, ij_labels, label_indexes))
            vaangles = fix(
                mean_of_labels((aa - aangles[ij_labels - 1])**2, ij_labels,
                               label_indexes))
            aangles[aangles < 0] += np.pi
            angles[vaangles < vangles] = aangles[vaangles < vangles]
        else:
            center_x = np.zeros(0, int)
            center_y = np.zeros(0, int)
            angles = np.zeros(0)
            nlabels = 0
            label_indexes = np.zeros(0, int)
            labels = np.zeros(mask.shape, int)

        ifull = []
        jfull = []
        ij_labelsfull = []
        labeldict = {}

        for label_id in np.unique(label_indexes):
            r = np.array(i) * (ij_labels == label_id)
            r = r[r != 0]
            c = np.array(j) * (ij_labels == label_id)
            c = c[c != 0]
            rect_strel = self.get_rectangle(angles[label_id - 1])
            seedmask = np.zeros_like(mask, int)
            seedmask[r, c] = label_id

            reconstructedlinearobject = maximum(seedmask, rect_strel)
            reconstructedlinearobject = reconstructedlinearobject * mask
            if self.overlap_within_angle == False:
                itemp, jtemp = np.where(reconstructedlinearobject == label_id)
                ifull += list(itemp)
                jfull += list(jtemp)
                ij_labelsfull += [label_id] * len(itemp)

            else:
                itemp, jtemp = np.where(reconstructedlinearobject == label_id)
                labeldict[label_id] = zip(itemp, jtemp)

        if self.overlap_within_angle == True:
            angledict = {}
            for eachangle in range(len(angles)):
                angledict[eachangle + 1] = [angles[eachangle]]
            nmerges = 1
            while nmerges != 0:
                nmerges = sum([
                    self.mergeduplicates(firstlabel, secondlabel, labeldict,
                                         angledict)
                    for firstlabel in label_indexes
                    for secondlabel in label_indexes
                    if firstlabel != secondlabel
                ])

            newlabels = labeldict.keys()
            newlabels.sort()
            newangles = angledict.keys()
            newangles.sort()
            angles = []
            for eachnewlabel in range(len(newlabels)):
                ifull += [
                    int(eachloc[0])
                    for eachloc in labeldict[newlabels[eachnewlabel]]
                ]
                jfull += [
                    int(eachloc[1])
                    for eachloc in labeldict[newlabels[eachnewlabel]]
                ]
                ij_labelsfull += [eachnewlabel + 1] * len(
                    labeldict[newlabels[eachnewlabel]])
                angles.append(np.mean(angledict[newlabels[eachnewlabel]]))
            angles = np.array(angles)

        ijv = np.zeros([len(ifull), 3], dtype=int)
        ijv[:, 0] = ifull
        ijv[:, 1] = jfull
        ijv[:, 2] = ij_labelsfull

        #
        # Make the objects
        #
        object_set = workspace.object_set
        object_name = self.object_name.value
        assert isinstance(object_set, cpo.ObjectSet)
        objects = cpo.Objects()
        objects.ijv = ijv
        objects.parent_image = image
        object_set.add_objects(objects, object_name)
        if self.show_window:
            workspace.display_data.mask = mask
            workspace.display_data.overlapping_labels = [
                l for l, idx in objects.get_labels()
            ]
        if self.overlap_within_angle == True:
            center_x = np.bincount(ijv[:, 2],
                                   ijv[:, 1])[objects.indices] / objects.areas
            center_y = np.bincount(ijv[:, 2],
                                   ijv[:, 0])[objects.indices] / objects.areas

        m = workspace.measurements
        assert isinstance(m, cpmeas.Measurements)
        m.add_measurement(object_name, I.M_LOCATION_CENTER_X, center_x)
        m.add_measurement(object_name, I.M_LOCATION_CENTER_Y, center_y)
        m.add_measurement(object_name, M_ANGLE, angles * 180 / np.pi)
        m.add_measurement(object_name, I.M_NUMBER_OBJECT_NUMBER, label_indexes)
        m.add_image_measurement(I.FF_COUNT % object_name, nlabels)
Exemple #20
0
  probs = sv.predict(td)
  
  
  out_cell = np.reshape(probs,(winds.shape[0],winds.shape[1]))
  plt.figure()
  plt.subplot(121)
  plt.imshow(out_cell)
  
  try:
      io.imsave('C:/users/attialex/Desktop/out_cell_4.png',skimage.img_as_uint(out_cell))
  except Exception as e:
      print e.message
  
  try:
      bg = normalize3Chan(imex*1.)
      
      fg_c = normalize3Chan(out_cell)
      fg_c[:,:,0]=0;
      fg_c[:,:,2]=0;
      s1 = cv2.addWeighted(bg,.8,fg_c,.2,0)
      cv2.imshow('cell',s1)
    
      cv2.waitKey()
  except Exception as e:
      print e.message
  
  
 
  max_cell = maximum(out_cell,np.ones((40,40)))
  unique_cell = np.unique(max_cell)
  plt.show()
.. note::

    `skimage.dilate` and `skimage.erode` are equivalent filters (see below for
    comparison).

Here is an example of the classical morphological gray-level filters: opening,
closing and morphological gradient.

"""

from skimage.filter.rank import maximum, minimum, gradient

noisy_image = img_as_ubyte(data.camera())

closing = maximum(minimum(noisy_image, disk(5)), disk(5))
opening = minimum(maximum(noisy_image, disk(5)), disk(5))
grad = gradient(noisy_image, disk(5))

# display results
fig = plt.figure(figsize=[10, 7])

plt.subplot(2, 2, 1)
plt.imshow(noisy_image, cmap=plt.cm.gray)
plt.title('Original')
plt.axis('off')

plt.subplot(2, 2, 2)
plt.imshow(closing, cmap=plt.cm.gray)
plt.title('Gray-level closing')
plt.axis('off')
.. note::

    `skimage.dilate` and `skimage.erode` are equivalent filters (see below for
    comparison).

Here is an example of the classical morphological greylevel filters: opening,
closing and morphological gradient.

"""

from skimage.filter.rank import maximum, minimum, gradient

ima = data.camera()

closing = maximum(minimum(ima, disk(5)), disk(5))
opening = minimum(maximum(ima, disk(5)), disk(5))
grad = gradient(ima, disk(5))

# display results
fig = plt.figure(figsize=[10, 7])
plt.subplot(2, 2, 1)
plt.imshow(ima, cmap=plt.cm.gray)
plt.xlabel('original')
plt.subplot(2, 2, 2)
plt.imshow(closing, cmap=plt.cm.gray)
plt.xlabel('greylevel closing')
plt.subplot(2, 2, 3)
plt.imshow(opening, cmap=plt.cm.gray)
plt.xlabel('greylevel opening')
plt.subplot(2, 2, 4)
Exemple #23
0
 plt.subplot(122)
 plt.imshow(out_pile)
 try:
     io.imsave('C:/users/attialex/Desktop/out_pile_3.png',skimage.img_as_uint(out_pile))
     io.imsave('C:/users/attialex/Desktop/out_cell_3.png',skimage.img_as_uint(out_cell))
 except Exception as e:
     print e.message
 
 try:
     bg = normalize3Chan(imex*1.)
     
     fg_c = normalize3Chan(out_cell)
     fg_p = normalize3Chan(out_pile)
     fg_c[:,:,0]=0;
     fg_c[:,:,2]=0;
     
     s1 = cv2.addWeighted(bg,.8,fg_c,.2,0)
     cv2.imshow('cell',s1)
     s2 = cv2.addWeighted(bg,.8,fg_p,.2,0)
     cv2.imshow('pile',s2)
     cv2.waitKey()
 except Exception as e:
     print e.message
 
 
 max_pile = maximum(out_pile,np.ones((40,40)))
 unique_pile = np.unique(max_pile)
 
 max_cell = maximum(out_cell,np.ones((40,40)))
 unique_cell = np.unique(max_cell)
 plt.show()
def cr_max(image, selem):
    return maximum(image=image, selem=selem)
def cr_max(image, selem):
    return maximum(image=image, selem=selem)
Exemple #26
0
            counter += 1
    print 'predicting'
    probs = sv.predict(td)

    out_cell = np.reshape(probs, (winds.shape[0], winds.shape[1]))
    plt.figure()
    plt.subplot(121)
    plt.imshow(out_cell)

    try:
        io.imsave('C:/users/attialex/Desktop/out_cell_4.png',
                  skimage.img_as_uint(out_cell))
    except Exception as e:
        print e.message

    try:
        bg = normalize3Chan(imex * 1.)

        fg_c = normalize3Chan(out_cell)
        fg_c[:, :, 0] = 0
        fg_c[:, :, 2] = 0
        s1 = cv2.addWeighted(bg, .8, fg_c, .2, 0)
        cv2.imshow('cell', s1)

        cv2.waitKey()
    except Exception as e:
        print e.message

    max_cell = maximum(out_cell, np.ones((40, 40)))
    unique_cell = np.unique(max_cell)
    plt.show()