Exemple #1
0
    def test_selem(self):
        """Test results if selem is given."""
        selem_cross = np.array(
            [[0, 1, 0], [1, 1, 1], [0, 1, 0]], dtype=np.bool)
        result_selem_cross = extrema.local_maxima(
            self.image, selem=selem_cross)
        assert result_selem_cross.dtype == np.bool
        assert_equal(result_selem_cross, self.expected_cross)

        for selem in [
            ((True,) * 3,) * 3,
            np.ones((3, 3), dtype=np.float64),
            np.ones((3, 3), dtype=np.uint8),
            np.ones((3, 3), dtype=np.bool),
        ]:
            # Test different dtypes for selem which expects a boolean array but
            # will accept and convert other types if possible
            result_selem_square = extrema.local_maxima(self.image, selem=selem)
            assert result_selem_square.dtype == np.bool
            assert_equal(result_selem_square, self.expected_default)

        selem_x = np.array([[1, 0, 1], [0, 1, 0], [1, 0, 1]], dtype=np.bool)
        expected_selem_x = np.array(
            [[1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0],
             [1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
             [0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0],
             [0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0],
             [0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0],
             [0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0]],
            dtype=np.bool
        )
        result_selem_x = extrema.local_maxima(self.image, selem=selem_x)
        assert result_selem_x.dtype == np.bool
        assert_equal(result_selem_x, expected_selem_x)
Exemple #2
0
    def test_nd(self):
        """Test one- and three-dimensional case."""
        # One-dimension
        x_1d = np.array([1, 1, 0, 1, 2, 3, 0, 2, 1, 2, 0])
        expected_1d = np.array([1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0],
                               dtype=np.bool)
        result_1d = extrema.local_maxima(x_1d)
        assert result_1d.dtype == np.bool
        assert_equal(result_1d, expected_1d)

        # 3-dimensions (adapted from old unit test)
        x_3d = np.zeros((8, 8, 8), dtype=np.uint8)
        expected_3d = np.zeros((8, 8, 8), dtype=np.bool)
        # first maximum: only one pixel
        x_3d[1, 1:3, 1:3] = 100
        x_3d[2, 2, 2] = 200
        x_3d[3, 1:3, 1:3] = 100
        expected_3d[2, 2, 2] = 1
        # second maximum: three pixels in z-direction
        x_3d[5:8, 1, 1] = 200
        expected_3d[5:8, 1, 1] = 1
        # third: two maxima in 0 and 3.
        x_3d[0, 5:8, 5:8] = 200
        x_3d[1, 6, 6] = 100
        x_3d[2, 5:7, 5:7] = 200
        x_3d[0:3, 5:8, 5:8] += 50
        expected_3d[0, 5:8, 5:8] = 1
        expected_3d[2, 5:7, 5:7] = 1
        # four : one maximum in the corner of the square
        x_3d[6:8, 6:8, 6:8] = 200
        x_3d[7, 7, 7] = 255
        expected_3d[7, 7, 7] = 1
        result_3d = extrema.local_maxima(x_3d)
        assert result_3d.dtype == np.bool
        assert_equal(result_3d, expected_3d)
Exemple #3
0
    def test_footprint(self):
        """Test results if footprint is given."""
        footprint_cross = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]],
                                   dtype=bool)
        result_footprint_cross = extrema.local_maxima(
            self.image, footprint=footprint_cross)
        assert result_footprint_cross.dtype == bool
        assert_equal(result_footprint_cross, self.expected_cross)

        for footprint in [
            ((True, ) * 3, ) * 3,
                np.ones((3, 3), dtype=np.float64),
                np.ones((3, 3), dtype=np.uint8),
                np.ones((3, 3), dtype=bool),
        ]:
            # Test different dtypes for footprint which expects a boolean array
            # but will accept and convert other types if possible
            result_footprint_square = extrema.local_maxima(self.image,
                                                           footprint=footprint)
            assert result_footprint_square.dtype == bool
            assert_equal(result_footprint_square, self.expected_default)

        footprint_x = np.array([[1, 0, 1], [0, 1, 0], [1, 0, 1]], dtype=bool)
        expected_footprint_x = np.array(
            [[1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0],
             [1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
             [0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0],
             [0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0],
             [0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0],
             [0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0]],
            dtype=bool)
        result_footprint_x = extrema.local_maxima(self.image,
                                                  footprint=footprint_x)
        assert result_footprint_x.dtype == bool
        assert_equal(result_footprint_x, expected_footprint_x)
    def test_nd(self):
        """Test one- and three-dimensional case."""
        # One-dimension
        x_1d = np.array([1, 1, 0, 1, 2, 3, 0, 2, 1, 2, 0])
        expected_1d = np.array([1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0],
                               dtype=np.bool)
        result_1d = extrema.local_maxima(x_1d)
        assert result_1d.dtype == np.bool
        assert_equal(result_1d, expected_1d)

        # 3-dimensions (adapted from old unit test)
        x_3d = np.zeros((8, 8, 8), dtype=np.uint8)
        expected_3d = np.zeros((8, 8, 8), dtype=np.bool)
        # first maximum: only one pixel
        x_3d[1, 1:3, 1:3] = 100
        x_3d[2, 2, 2] = 200
        x_3d[3, 1:3, 1:3] = 100
        expected_3d[2, 2, 2] = 1
        # second maximum: three pixels in z-direction
        x_3d[5:8, 1, 1] = 200
        expected_3d[5:8, 1, 1] = 1
        # third: two maxima in 0 and 3.
        x_3d[0, 5:8, 5:8] = 200
        x_3d[1, 6, 6] = 100
        x_3d[2, 5:7, 5:7] = 200
        x_3d[0:3, 5:8, 5:8] += 50
        expected_3d[0, 5:8, 5:8] = 1
        expected_3d[2, 5:7, 5:7] = 1
        # four : one maximum in the corner of the square
        x_3d[6:8, 6:8, 6:8] = 200
        x_3d[7, 7, 7] = 255
        expected_3d[7, 7, 7] = 1
        result_3d = extrema.local_maxima(x_3d)
        assert result_3d.dtype == np.bool
        assert_equal(result_3d, expected_3d)
    def test_selem(self):
        """Test results if selem is given."""
        selem_cross = np.array(
            [[0, 1, 0], [1, 1, 1], [0, 1, 0]], dtype=np.bool)
        result_selem_cross = extrema.local_maxima(
            self.image, selem=selem_cross)
        assert result_selem_cross.dtype == np.bool
        assert_equal(result_selem_cross, self.expected_cross)

        for selem in [
            ((True,) * 3,) * 3,
            np.ones((3, 3), dtype=np.float64),
            np.ones((3, 3), dtype=np.uint8),
            np.ones((3, 3), dtype=np.bool),
        ]:
            # Test different dtypes for selem which expects a boolean array but
            # will accept and convert other types if possible
            result_selem_square = extrema.local_maxima(self.image, selem=selem)
            assert result_selem_square.dtype == np.bool
            assert_equal(result_selem_square, self.expected_default)

        selem_x = np.array([[1, 0, 1], [0, 1, 0], [1, 0, 1]], dtype=np.bool)
        expected_selem_x = np.array(
            [[1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0],
             [1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
             [0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0],
             [0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0],
             [0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0],
             [0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0]],
            dtype=np.bool
        )
        result_selem_x = extrema.local_maxima(self.image, selem=selem_x)
        assert result_selem_x.dtype == np.bool
        assert_equal(result_selem_x, expected_selem_x)
Exemple #6
0
    def test_empty(self):
        """Test result with empty image."""
        result = extrema.local_maxima(np.array([]), indices=False)
        assert result.size == 0
        assert result.dtype == np.uint8

        result = extrema.local_maxima(np.array([]), indices=True)
        assert result.size == 0
        assert result.dtype == np.intp
    def test_indices(self):
        """Test output if indices of peaks are desired."""
        # Connectivity 1
        expected_conn1 = np.nonzero(self.expected_cross)
        result_conn1 = extrema.local_maxima(self.image, connectivity=1,
                                            indices=True)
        assert_equal(result_conn1, expected_conn1)

        # Connectivity 2
        expected_conn2 = np.nonzero(self.expected_default)
        result_conn2 = extrema.local_maxima(self.image, connectivity=2,
                                            indices=True)
        assert_equal(result_conn2, expected_conn2)
Exemple #8
0
    def test_indices(self):
        """Test output if indices of peaks are desired."""
        # Connectivity 1
        expected_conn1 = np.nonzero(self.expected_cross)
        result_conn1 = extrema.local_maxima(self.image, connectivity=1,
                                            indices=True)
        assert_equal(result_conn1, expected_conn1)

        # Connectivity 2
        expected_conn2 = np.nonzero(self.expected_default)
        result_conn2 = extrema.local_maxima(self.image, connectivity=2,
                                            indices=True)
        assert_equal(result_conn2, expected_conn2)
    def test_connectivity(self):
        """Test results if selem is a scalar."""
        # Connectivity 1: generates cross shaped structuring element
        result_conn1 = extrema.local_maxima(self.image, connectivity=1)
        assert_equal(result_conn1, self.expected_cross)

        # Connectivity 2: generates square shaped structuring element
        result_conn2 = extrema.local_maxima(self.image, connectivity=2)
        assert_equal(result_conn2, self.expected_default)

        # Connectivity 3: generates square shaped structuring element
        result_conn3 = extrema.local_maxima(self.image, connectivity=3)
        assert_equal(result_conn3, self.expected_default)
    def test_connectivity(self):
        """Test results if footprint is a scalar."""
        # Connectivity 1: generates cross shaped footprint
        result_conn1 = extrema.local_maxima(self.image, connectivity=1)
        assert result_conn1.dtype == bool
        assert_equal(result_conn1, self.expected_cross)

        # Connectivity 2: generates square shaped footprint
        result_conn2 = extrema.local_maxima(self.image, connectivity=2)
        assert result_conn2.dtype == bool
        assert_equal(result_conn2, self.expected_default)

        # Connectivity 3: generates square shaped footprint
        result_conn3 = extrema.local_maxima(self.image, connectivity=3)
        assert result_conn3.dtype == bool
        assert_equal(result_conn3, self.expected_default)
Exemple #11
0
    def test_local_maxima(self):
        "local maxima for various data types"
        data = np.array([[10,  11,  13,  14,  14,  15,  14,  14,  13,  11],
                         [11,  13,  15,  16,  16,  16,  16,  16,  15,  13],
                         [13,  15,  40,  40,  18,  18,  18,  60,  60,  15],
                         [14,  16,  40,  40,  19,  19,  19,  60,  60,  16],
                         [14,  16,  18,  19,  19,  19,  19,  19,  18,  16],
                         [15,  16,  18,  19,  19,  20,  19,  19,  18,  16],
                         [14,  16,  18,  19,  19,  19,  19,  19,  18,  16],
                         [14,  16,  80,  80,  19,  19,  19, 100, 100,  16],
                         [13,  15,  80,  80,  18,  18,  18, 100, 100,  15],
                         [11,  13,  15,  16,  16,  16,  16,  16,  15,  13]],
                        dtype=np.uint8)
        expected_result = np.array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                                    [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                                    [0, 0, 1, 1, 0, 0, 0, 1, 1, 0],
                                    [0, 0, 1, 1, 0, 0, 0, 1, 1, 0],
                                    [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                                    [0, 0, 0, 0, 0, 1, 0, 0, 0, 0],
                                    [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                                    [0, 0, 1, 1, 0, 0, 0, 1, 1, 0],
                                    [0, 0, 1, 1, 0, 0, 0, 1, 1, 0],
                                    [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]],
                                   dtype=np.uint8)
        for dtype in [np.uint8, np.uint64, np.int8, np.int64]:

            test_data = data.astype(dtype)
            out = extrema.local_maxima(test_data)

            error = diff(expected_result, out)
            assert error < eps
            assert out.dtype == expected_result.dtype
def  get_maxima_points(boundary_points, img, sigma=0.3 ): 
    width = img.shape[0]
    height = img.shape[1]

    canvas = Image.new('L', (width, height), 0)
    ImageDraw.Draw(canvas).polygon(boundary_points, outline=1, fill=1)
    mask = np.array(canvas)
    
    transformed_image = ndimage.distance_transform_edt(mask)
    normalized_ti =transformed_image/np.max(transformed_image)
    laplacian2 = ndimage.gaussian_laplace(normalized_ti, sigma=sigma)
   
    plt.figure(figsize=(10,10))
    plt.imshow(laplacian2)
    plt.colorbar()
    plt.show()

    local_maxima = extrema.local_maxima(1-laplacian2)
    label_maxima = label(local_maxima)
    plt.figure(figsize=(10,10))
    plt.imshow(label_maxima)
    plt.colorbar()
    plt.show()
    np.unique(label_maxima)
    all_inside_y, all_inside_x = np.where(label_maxima>1)
    all_points =[]
    for x,y in zip(all_inside_x, all_inside_y): 
          all_points.append(tuple((x,y)))
    return all_points 
    def test_exceptions(self):
        """Test if input validation triggers correct exceptions."""
        # Mismatching number of dimensions
        with raises(ValueError, match="number of dimensions"):
            extrema.local_maxima(self.image, selem=np.ones((3, 3, 3)))
        with raises(ValueError, match="number of dimensions"):
            extrema.local_maxima(self.image, selem=np.ones((3,)))

        # All dimensions in selem must be of size 3
        with raises(ValueError, match="dimension size"):
            extrema.local_maxima(self.image, selem=np.ones((2, 3)))
        with raises(ValueError, match="dimension size"):
            extrema.local_maxima(self.image, selem=np.ones((5, 5)))

        with raises(TypeError, match="float16 which is not supported"):
            extrema.local_maxima(np.empty(1, dtype=np.float16))
 def test_dtypes_old(self):
     """
     Test results with default configuration and data copied from old unit
     tests for all supported dtypes.
     """
     data = np.array(
         [[10, 11, 13, 14, 14, 15, 14, 14, 13, 11],
          [11, 13, 15, 16, 16, 16, 16, 16, 15, 13],
          [13, 15, 40, 40, 18, 18, 18, 60, 60, 15],
          [14, 16, 40, 40, 19, 19, 19, 60, 60, 16],
          [14, 16, 18, 19, 19, 19, 19, 19, 18, 16],
          [15, 16, 18, 19, 19, 20, 19, 19, 18, 16],
          [14, 16, 18, 19, 19, 19, 19, 19, 18, 16],
          [14, 16, 80, 80, 19, 19, 19, 100, 100, 16],
          [13, 15, 80, 80, 18, 18, 18, 100, 100, 15],
          [11, 13, 15, 16, 16, 16, 16, 16, 15, 13]],
         dtype=np.uint8
     )
     expected = np.array(
         [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
          [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
          [0, 0, 1, 1, 0, 0, 0, 1, 1, 0],
          [0, 0, 1, 1, 0, 0, 0, 1, 1, 0],
          [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
          [0, 0, 0, 0, 0, 1, 0, 0, 0, 0],
          [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
          [0, 0, 1, 1, 0, 0, 0, 1, 1, 0],
          [0, 0, 1, 1, 0, 0, 0, 1, 1, 0],
          [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]],
         dtype=np.uint8
     )
     for dtype in self.supported_dtypes:
         image = data.astype(dtype)
         result = extrema.local_maxima(image)
         assert_equal(result, expected)
Exemple #15
0
    def test_extrema_float(self):
        """Specific tests for float type."""
        # Copied from old unit test for local_maxma
        image = np.array(
            [[0.10, 0.11, 0.13, 0.14, 0.14, 0.15, 0.14, 0.14, 0.13, 0.11],
             [0.11, 0.13, 0.15, 0.16, 0.16, 0.16, 0.16, 0.16, 0.15, 0.13],
             [0.13, 0.15, 0.40, 0.40, 0.18, 0.18, 0.18, 0.60, 0.60, 0.15],
             [0.14, 0.16, 0.40, 0.40, 0.19, 0.19, 0.19, 0.60, 0.60, 0.16],
             [0.14, 0.16, 0.18, 0.19, 0.19, 0.19, 0.19, 0.19, 0.18, 0.16],
             [0.15, 0.182, 0.18, 0.19, 0.204, 0.20, 0.19, 0.19, 0.18, 0.16],
             [0.14, 0.16, 0.18, 0.19, 0.19, 0.19, 0.19, 0.19, 0.18, 0.16],
             [0.14, 0.16, 0.80, 0.80, 0.19, 0.19, 0.19, 1.0, 1.0, 0.16],
             [0.13, 0.15, 0.80, 0.80, 0.18, 0.18, 0.18, 1.0, 1.0, 0.15],
             [0.11, 0.13, 0.15, 0.16, 0.16, 0.16, 0.16, 0.16, 0.15, 0.13]],
            dtype=np.float32)
        inverted_image = 1.0 - image
        expected_result = np.array(
            [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
             [0, 0, 1, 1, 0, 0, 0, 1, 1, 0], [0, 0, 1, 1, 0, 0, 0, 1, 1, 0],
             [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0, 0, 0, 0, 0],
             [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 1, 0, 0, 0, 1, 1, 0],
             [0, 0, 1, 1, 0, 0, 0, 1, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]],
            dtype=np.bool)

        # Test for local maxima with automatic step calculation
        result = extrema.local_maxima(image)
        assert result.dtype == np.bool
        assert_equal(result, expected_result)

        # Test for local minima with automatic step calculation
        result = extrema.local_minima(inverted_image)
        assert result.dtype == np.bool
        assert_equal(result, expected_result)
Exemple #16
0
    def test_3d(self):
        """tests the detection of maxima in 3D."""
        img = np.zeros((8, 8, 8), dtype=np.uint8)
        local_maxima = np.zeros((8, 8, 8), dtype=np.uint8)

        # first maximum: only one pixel
        img[1, 1:3, 1:3] = 100
        img[2, 2, 2] = 200
        img[3, 1:3, 1:3] = 100
        local_maxima[2, 2, 2] = 1

        # second maximum: three pixels in z-direction
        img[5:8, 1, 1] = 200
        local_maxima[5:8, 1, 1] = 1

        # third: two maxima in 0 and 3.
        img[0, 5:8, 5:8] = 200
        img[1, 6, 6] = 100
        img[2, 5:7, 5:7] = 200
        img[0:3, 5:8, 5:8] += 50
        local_maxima[0, 5:8, 5:8] = 1
        local_maxima[2, 5:7, 5:7] = 1

        # four : one maximum in the corner of the square
        img[6:8, 6:8, 6:8] = 200
        img[7, 7, 7] = 255
        local_maxima[7, 7, 7] = 1

        se = ndi.generate_binary_structure(3, 1)
        out = extrema.local_maxima(img, se)

        error = diff(local_maxima, out)
        assert error < eps
Exemple #17
0
    def test_empty(self):
        """Test result with empty image."""
        result = extrema.local_maxima(np.array([[]]), indices=False)
        assert result.size == 0
        assert result.dtype == np.bool
        assert result.shape == (1, 0)

        result = extrema.local_maxima(np.array([]), indices=True)
        assert isinstance(result, tuple)
        assert len(result) == 1
        assert result[0].size == 0
        assert result[0].dtype == np.intp

        result = extrema.local_maxima(np.array([[]]), indices=True)
        assert isinstance(result, tuple)
        assert len(result) == 2
        assert result[0].size == 0
        assert result[0].dtype == np.intp
        assert result[1].size == 0
        assert result[1].dtype == np.intp
    def test_empty(self):
        """Test result with empty image."""
        result = extrema.local_maxima(np.array([[]]), indices=False)
        assert result.size == 0
        assert result.dtype == np.bool
        assert result.shape == (1, 0)

        result = extrema.local_maxima(np.array([]), indices=True)
        assert isinstance(result, tuple)
        assert len(result) == 1
        assert result[0].size == 0
        assert result[0].dtype == np.intp

        result = extrema.local_maxima(np.array([[]]), indices=True)
        assert isinstance(result, tuple)
        assert len(result) == 2
        assert result[0].size == 0
        assert result[0].dtype == np.intp
        assert result[1].size == 0
        assert result[1].dtype == np.intp
    def test_allow_borders(self):
        """Test maxima detection at the image border."""
        # Use connectivity 1 to allow many maxima, only filtering at border is
        # of interest
        result_with_boder = extrema.local_maxima(
            self.image, connectivity=1, allow_borders=True)
        assert_equal(result_with_boder, self.expected_cross)

        expected_without_border = np.array(
            [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
             [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0],
             [0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0],
             [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0],
             [0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0],
             [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]],
            dtype=np.uint8
        )
        result_without_border = extrema.local_maxima(
            self.image, connectivity=1, allow_borders=False)
        assert_equal(result_without_border, expected_without_border)
 def test_constant(self):
     """Test behaviour for 'flat' images."""
     const_image = np.full((7, 6), 42, dtype=np.uint8)
     expected = np.zeros((7, 6), dtype=np.uint8)
     for dtype in self.supported_dtypes:
         const_image = const_image.astype(dtype)
         # test for local maxima
         result = extrema.local_maxima(const_image)
         assert_equal(result, expected)
         # test for local minima
         result = extrema.local_minima(const_image)
         assert_equal(result, expected)
    def test_small_array(self):
        """Test output for arrays with dimension smaller 3.

        If any dimension of an array is smaller than 3 and `allow_borders` is
        false a structuring element, which has at least 3 elements in each
        dimension, can't be applied. This is an implementation detail so
        `local_maxima` should still return valid output (see gh-3261).

        If `allow_borders` is true the array is padded internally and there is
        no problem.
        """
        warning_msg = "maxima can't exist .* any dimension smaller 3 .*"
        x = np.array([0, 1])
        extrema.local_maxima(x, allow_borders=True)  # no warning
        with warns(UserWarning, match=warning_msg):
            result = extrema.local_maxima(x, allow_borders=False)
        assert_equal(result, [0, 0])
        assert result.dtype == np.bool

        x = np.array([[1, 2], [2, 2]])
        extrema.local_maxima(x, allow_borders=True, indices=True)  # no warning
        with warns(UserWarning, match=warning_msg):
            result = extrema.local_maxima(x, allow_borders=False, indices=True)
        assert_equal(result, np.zeros((2, 0), dtype=np.intp))
        assert result[0].dtype == np.intp
        assert result[1].dtype == np.intp
Exemple #22
0
    def test_small_array(self):
        """Test output for arrays with dimension smaller 3.

        If any dimension of an array is smaller than 3 and `allow_borders` is
        false a structuring element, which has at least 3 elements in each
        dimension, can't be applied. This is an implementation detail so
        `local_maxima` should still return valid output (see gh-3261).

        If `allow_borders` is true the array is padded internally and there is
        no problem.
        """
        warning_msg = "maxima can't exist .* any dimension smaller 3 .*"
        x = np.array([0, 1])
        extrema.local_maxima(x, allow_borders=True)  # no warning
        with warns(UserWarning, match=warning_msg):
            result = extrema.local_maxima(x, allow_borders=False)
        assert_equal(result, [0, 0])
        assert result.dtype == np.bool

        x = np.array([[1, 2], [2, 2]])
        extrema.local_maxima(x, allow_borders=True, indices=True)  # no warning
        with warns(UserWarning, match=warning_msg):
            result = extrema.local_maxima(x, allow_borders=False, indices=True)
        assert_equal(result, np.zeros((2, 0), dtype=np.intp))
        assert result[0].dtype == np.intp
        assert result[1].dtype == np.intp
Exemple #23
0
    def test_selem(self):
        """Test results if selem is an array."""
        selem_cross = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]])
        result_selem_cross = extrema.local_maxima(self.image,
                                                  selem=selem_cross)
        assert_equal(result_selem_cross, self.expected_cross)

        selem_square = np.ones((3, 3), dtype=np.uint8)
        result_selem_square = extrema.local_maxima(self.image,
                                                   selem=selem_square)
        assert_equal(result_selem_square, self.expected_default)

        selem_x = np.array([[1, 0, 1], [0, 1, 0], [1, 0, 1]])
        expected_selem_x = np.array(
            [[1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0],
             [1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
             [0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0],
             [0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0],
             [0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0],
             [0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0]],
            dtype=np.uint8)
        result_selem_x = extrema.local_maxima(self.image, selem=selem_x)
        assert_equal(result_selem_x, expected_selem_x)
Exemple #24
0
    def test_extrema_float(self):
        "specific tests for float type"
        data = np.array(
            [[0.10, 0.11, 0.13, 0.14, 0.14, 0.15, 0.14, 0.14, 0.13, 0.11],
             [0.11, 0.13, 0.15, 0.16, 0.16, 0.16, 0.16, 0.16, 0.15, 0.13],
             [0.13, 0.15, 0.40, 0.40, 0.18, 0.18, 0.18, 0.60, 0.60, 0.15],
             [0.14, 0.16, 0.40, 0.40, 0.19, 0.19, 0.19, 0.60, 0.60, 0.16],
             [0.14, 0.16, 0.18, 0.19, 0.19, 0.19, 0.19, 0.19, 0.18, 0.16],
             [0.15, 0.182, 0.18, 0.19, 0.204, 0.20, 0.19, 0.19, 0.18, 0.16],
             [0.14, 0.16, 0.18, 0.19, 0.19, 0.19, 0.19, 0.19, 0.18, 0.16],
             [0.14, 0.16, 0.80, 0.80, 0.19, 0.19, 0.19, 1.0, 1.0, 0.16],
             [0.13, 0.15, 0.80, 0.80, 0.18, 0.18, 0.18, 1.0, 1.0, 0.15],
             [0.11, 0.13, 0.15, 0.16, 0.16, 0.16, 0.16, 0.16, 0.15, 0.13]],
            dtype=np.float32)
        inverted_data = 1.0 - data

        expected_result = np.array(
            [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
             [0, 0, 1, 1, 0, 0, 0, 1, 1, 0], [0, 0, 1, 1, 0, 0, 0, 1, 1, 0],
             [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0, 0, 0, 0, 0],
             [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 1, 0, 0, 0, 1, 1, 0],
             [0, 0, 1, 1, 0, 0, 0, 1, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]],
            dtype=np.uint8)

        # test for local maxima with automatic step calculation
        out = extrema.local_maxima(data)
        error = diff(expected_result, out)
        assert error < eps

        # test for local minima with automatic step calculation
        out = extrema.local_minima(inverted_data)
        error = diff(expected_result, out)
        assert error < eps

        out = extrema.h_maxima(data, 0.003)
        expected_result = np.array(
            [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
             [0, 0, 1, 1, 0, 0, 0, 1, 1, 0], [0, 0, 1, 1, 0, 0, 0, 1, 1, 0],
             [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
             [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 1, 0, 0, 0, 1, 1, 0],
             [0, 0, 1, 1, 0, 0, 0, 1, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]],
            dtype=np.uint8)

        error = diff(expected_result, out)
        assert error < eps

        out = extrema.h_minima(inverted_data, 0.003)
        error = diff(expected_result, out)
        assert error < eps
    def test_selem(self):
        """Test results if selem is an array."""
        selem_cross = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]])
        result_selem_cross = extrema.local_maxima(
            self.image, selem=selem_cross)
        assert_equal(result_selem_cross, self.expected_cross)

        selem_square = np.ones((3, 3), dtype=np.uint8)
        result_selem_square = extrema.local_maxima(
            self.image, selem=selem_square)
        assert_equal(result_selem_square, self.expected_default)

        selem_x = np.array([[1, 0, 1], [0, 1, 0], [1, 0, 1]])
        expected_selem_x = np.array(
            [[1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0],
             [1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
             [0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0],
             [0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0],
             [0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0],
             [0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0]],
            dtype=np.uint8
        )
        result_selem_x = extrema.local_maxima(self.image, selem=selem_x)
        assert_equal(result_selem_x, expected_selem_x)
Exemple #26
0
    def test_local_extrema_uniform(self):
        "local extrema tests for uniform arrays with various data types"

        data = np.full((7, 6), 42, dtype=np.uint8)

        expected_result = np.zeros((7, 6), dtype=np.uint8)

        for dtype in [np.uint8, np.uint64, np.int8, np.int64]:
            data = data.astype(dtype)

            # test for local maxima
            out = extrema.local_maxima(data)
            error = diff(expected_result, out)
            assert error < eps
            assert out.dtype == expected_result.dtype

            # test for local minima
            out = extrema.local_minima(data)
            error = diff(expected_result, out)
            assert error < eps
            assert out.dtype == expected_result.dtype
    def test_extrema_float(self):
        """Specific tests for float type."""
        # Copied from old unit test for local_maxma
        image = np.array(
            [[0.10, 0.11, 0.13, 0.14, 0.14, 0.15, 0.14, 0.14, 0.13, 0.11],
             [0.11, 0.13, 0.15, 0.16, 0.16, 0.16, 0.16, 0.16, 0.15, 0.13],
             [0.13, 0.15, 0.40, 0.40, 0.18, 0.18, 0.18, 0.60, 0.60, 0.15],
             [0.14, 0.16, 0.40, 0.40, 0.19, 0.19, 0.19, 0.60, 0.60, 0.16],
             [0.14, 0.16, 0.18, 0.19, 0.19, 0.19, 0.19, 0.19, 0.18, 0.16],
             [0.15, 0.182, 0.18, 0.19, 0.204, 0.20, 0.19, 0.19, 0.18, 0.16],
             [0.14, 0.16, 0.18, 0.19, 0.19, 0.19, 0.19, 0.19, 0.18, 0.16],
             [0.14, 0.16, 0.80, 0.80, 0.19, 0.19, 0.19, 1.0, 1.0, 0.16],
             [0.13, 0.15, 0.80, 0.80, 0.18, 0.18, 0.18, 1.0, 1.0, 0.15],
             [0.11, 0.13, 0.15, 0.16, 0.16, 0.16, 0.16, 0.16, 0.15, 0.13]],
            dtype=np.float32
        )
        inverted_image = 1.0 - image
        expected_result = np.array(
            [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
             [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
             [0, 0, 1, 1, 0, 0, 0, 1, 1, 0],
             [0, 0, 1, 1, 0, 0, 0, 1, 1, 0],
             [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
             [0, 1, 0, 0, 1, 0, 0, 0, 0, 0],
             [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
             [0, 0, 1, 1, 0, 0, 0, 1, 1, 0],
             [0, 0, 1, 1, 0, 0, 0, 1, 1, 0],
             [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]],
            dtype=np.bool
        )

        # Test for local maxima with automatic step calculation
        result = extrema.local_maxima(image)
        assert result.dtype == np.bool
        assert_equal(result, expected_result)

        # Test for local minima with automatic step calculation
        result = extrema.local_minima(inverted_image)
        assert result.dtype == np.bool
        assert_equal(result, expected_result)
Exemple #28
0
def distance_transform_seeds(image_data):
    """Create seed locations maximally distant from thresholded raw image.

    Parameters
    ----------
    image_data : ndarray

    Returns
    -------
    list of ndarray
    """
    seeds = []
    if image_data.dtype == np.bool:
        #assuming membrane zero and cells one labeled
        thresh = image_data
    else:
        # otsu thresholding
        thresh = image_data < filters.threshold_otsu(image_data)

    transform = ndimage.distance_transform_cdt(thresh)
    skmax = extrema.local_maxima(transform)
    seeds = np.transpose(np.nonzero(skmax))

    return seeds
def localMaximaBlobDetection(image_path: str):
    image = io.imread(image_path)
    local_maxima = extrema.local_maxima(image)
Exemple #30
0
    def test_extrema_float(self):
        "specific tests for float type"
        data = np.array([[0.10, 0.11, 0.13, 0.14, 0.14, 0.15, 0.14,
                          0.14, 0.13, 0.11],
                         [0.11, 0.13, 0.15, 0.16, 0.16, 0.16, 0.16,
                          0.16, 0.15, 0.13],
                         [0.13, 0.15, 0.40, 0.40, 0.18, 0.18, 0.18,
                          0.60, 0.60, 0.15],
                         [0.14, 0.16, 0.40, 0.40, 0.19, 0.19, 0.19,
                          0.60, 0.60, 0.16],
                         [0.14, 0.16, 0.18, 0.19, 0.19, 0.19, 0.19,
                          0.19, 0.18, 0.16],
                         [0.15, 0.182, 0.18, 0.19, 0.204, 0.20, 0.19,
                          0.19, 0.18, 0.16],
                         [0.14, 0.16, 0.18, 0.19, 0.19, 0.19, 0.19,
                          0.19, 0.18, 0.16],
                         [0.14, 0.16, 0.80, 0.80, 0.19, 0.19, 0.19,
                          1.0,  1.0, 0.16],
                         [0.13, 0.15, 0.80, 0.80, 0.18, 0.18, 0.18,
                          1.0, 1.0, 0.15],
                         [0.11, 0.13, 0.15, 0.16, 0.16, 0.16, 0.16,
                          0.16, 0.15, 0.13]],
                        dtype=np.float32)
        inverted_data = 1.0 - data

        expected_result = np.array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                                    [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                                    [0, 0, 1, 1, 0, 0, 0, 1, 1, 0],
                                    [0, 0, 1, 1, 0, 0, 0, 1, 1, 0],
                                    [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                                    [0, 1, 0, 0, 1, 0, 0, 0, 0, 0],
                                    [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                                    [0, 0, 1, 1, 0, 0, 0, 1, 1, 0],
                                    [0, 0, 1, 1, 0, 0, 0, 1, 1, 0],
                                    [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]],
                                   dtype=np.uint8)

        # test for local maxima with automatic step calculation
        out = extrema.local_maxima(data)
        error = diff(expected_result, out)
        assert error < eps

        # test for local minima with automatic step calculation
        out = extrema.local_minima(inverted_data)
        error = diff(expected_result, out)
        assert error < eps

        out = extrema.h_maxima(data, 0.003)
        expected_result = np.array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                                    [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                                    [0, 0, 1, 1, 0, 0, 0, 1, 1, 0],
                                    [0, 0, 1, 1, 0, 0, 0, 1, 1, 0],
                                    [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                                    [0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
                                    [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                                    [0, 0, 1, 1, 0, 0, 0, 1, 1, 0],
                                    [0, 0, 1, 1, 0, 0, 0, 1, 1, 0],
                                    [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]],
                                   dtype=np.uint8)

        error = diff(expected_result, out)
        assert error < eps

        out = extrema.h_minima(inverted_data, 0.003)
        error = diff(expected_result, out)
        assert error < eps
    def buttonSave(arg):

        copy = arg[1]
        imageTemp = arg[2]
        filterTry = filterVar.get()
        if (filterTry == 1):
            copy = cv2.GaussianBlur(copy, (5, 5), 0)
        elif (filterTry == 2):
            copy = cv2.Canny(copy, 100, 150)
        elif (filterTry == 3):
            copy = filters.roberts(imageTemp)
        elif (filterTry == 4):
            copy = filters.sato(imageTemp)
        elif (filterTry == 5):
            copy = filters.scharr(imageTemp)
        elif (filterTry == 6):
            copy = filters.sobel(imageTemp)
        elif (filterTry == 7):
            copy = filters.unsharp_mask(copy, radius=30, amount=3)
        elif (filterTry == 8):
            #copy = filters.median(imageTemp, disk(5))
            b, g, r = cv2.split(copy)
            b = filters.median(b, disk(5))
            g = filters.median(g, disk(5))
            r = filters.median(r, disk(5))
            copy = cv2.merge((b, g, r))
        elif (filterTry == 9):
            copy = filters.prewitt(imageTemp)
        elif (filterTry == 10):
            copy = filters.rank.modal(imageTemp, disk(5))
        flag = 0
        if (np.ndim(copy) == 2):
            flag = 0
        else:
            flag = 1

        if (hEsitleme.get() or hGrafik.get()):
            if (flag):
                copy = cv2.cvtColor(copy, cv2.COLOR_BGR2GRAY)
            if (hGrafik.get()):
                plt.hist(copy.ravel(), 256, [0, 256])
                plt.show()
            if (hEsitleme.get()):
                copy = cv2.equalizeHist(copy)

        if (uzaysalVars[0].get()):
            reScaleRatio = float(uzaysalVarsInputs[0].get())
            if (np.ndim(copy) == 3):
                b, g, r = cv2.split(copy)
                b = transform.rescale(b, reScaleRatio)
                g = transform.rescale(g, reScaleRatio)
                r = transform.rescale(r, reScaleRatio)
                copy = cv2.merge((b, g, r))
            else:
                copy = transform.rescale(copy, reScaleRatio)

        if (uzaysalVars[1].get()):
            resizeY = float(uzaysalVarsInputs[1].get())
            resizeX = float(uzaysalVarsInputs[2].get())
            if (np.ndim(copy) == 3):
                b, g, r = cv2.split(copy)
                b = transform.resize(
                    b, (b.shape[0] // resizeX, b.shape[1] // resizeY),
                    anti_aliasing=True)
                g = transform.resize(
                    g, (g.shape[0] // resizeX, g.shape[1] // resizeY),
                    anti_aliasing=True)
                r = transform.resize(
                    r, (r.shape[0] // resizeX, r.shape[1] // resizeY),
                    anti_aliasing=True)
                copy = cv2.merge((b, g, r))
            else:
                copy = transform.resize(
                    copy, (copy.shape[0] // resizeX, copy.shape[1] // resizeY),
                    anti_aliasing=True)
        if (uzaysalVars[2].get()):
            copy = transform.swirl(copy, rotation=0, strength=10, radius=120)
        if (uzaysalVars[3].get()):
            copy = transform.rotate(copy,
                                    int(uzaysalVarsInputs[3].get()),
                                    resize=True)
        if (uzaysalVars[4].get()):
            copy = copy[:, ::-1]

        if (yogunlukVars[0].get() or yogunlukVars[1].get()):
            if (yogunlukVars[0].get()):
                startINX = int(yogunlukVars[2].get())
                finishINX = int(yogunlukVars[3].get())
                copy = exposure.rescale_intensity(copy,
                                                  in_range=(startINX,
                                                            finishINX))
            if (yogunlukVars[1].get()):
                startOUTX = int(yogunlukVars[4].get())
                finishOUTX = int(yogunlukVars[5].get())
                copy = exposure.rescale_intensity(copy,
                                                  out_range=(startOUTX,
                                                             finishOUTX))

        morfoTry = morfVar.get()
        morfoGirisN = 0
        if (np.ndim(copy) == 3):
            morfoGirisN = 1

        if (morfoTry == 1):
            if (morfoGirisN):
                b, g, r = cv2.split(copy)
                b = morphology.area_closing(b, 128, 9)
                g = morphology.area_closing(g, 128, 9)
                r = morphology.area_closing(r, 128, 9)
                copy = cv2.merge((b, g, r))
            else:
                copy = morphology.area_closing(copy)
        elif (morfoTry == 2):
            if (morfoGirisN):
                b, g, r = cv2.split(copy)
                b = morphology.area_opening(b, 128, 9)
                g = morphology.area_opening(g, 128, 9)
                r = morphology.area_opening(r, 128, 9)
                copy = cv2.merge((b, g, r))
            else:
                copy = morphology.area_opening(copy)
        elif (morfoTry == 3):
            if (morfoGirisN):
                b, g, r = cv2.split(copy)
                b = morphology.erosion(b, disk(6))
                g = morphology.erosion(g, disk(6))
                r = morphology.erosion(r, disk(6))
                copy = cv2.merge((b, g, r))
            else:
                copy = morphology.erosion(copy, disk(6))
        elif (morfoTry == 4):
            if (morfoGirisN):
                b, g, r = cv2.split(copy)
                b = morphology.dilation(b, disk(6))
                g = morphology.dilation(g, disk(6))
                r = morphology.dilation(r, disk(6))
                copy = cv2.merge((b, g, r))
            else:
                copy = morphology.dilation(copy, disk(6))
        elif (morfoTry == 5):
            if (morfoGirisN):
                b, g, r = cv2.split(copy)
                b = morphology.opening(b, disk(6))
                g = morphology.opening(g, disk(6))
                r = morphology.opening(r, disk(6))
                copy = cv2.merge((b, g, r))
            else:
                copy = morphology.opening(copy, disk(6))
        elif (morfoTry == 6):
            if (morfoGirisN):
                b, g, r = cv2.split(copy)
                b = morphology.closing(b, disk(6))
                g = morphology.opening(g, disk(6))
                r = morphology.opening(r, disk(6))
                copy = cv2.merge((b, g, r))
            else:
                copy = morphology.opening(copy, disk(6))
        elif (morfoTry == 7):
            if (morfoGirisN):
                b, g, r = cv2.split(copy)
                b = morphology.white_tophat(b, disk(6))
                g = morphology.white_tophat(g, disk(6))
                r = morphology.white_tophat(r, disk(6))
                copy = cv2.merge((b, g, r))
            else:
                copy = morphology.white_tophat(copy, disk(6))
        elif (morfoTry == 8):
            if (morfoGirisN):
                b, g, r = cv2.split(copy)
                b = morphology.black_tophat(b, disk(6))
                g = morphology.black_tophat(g, disk(6))
                r = morphology.black_tophat(r, disk(6))
                copy = cv2.merge((b, g, r))
            else:
                copy = morphology.black_tophat(copy, disk(6))
        elif (morfoTry == 10):
            if (morfoGirisN):
                copy = cv2.cvtColor(copy, cv2.COLOR_BGR2GRAY)

            copy = exposure.rescale_intensity(copy)
            local_maxima = extrema.local_maxima(copy)
            label_maxima = measure.label(local_maxima)
            copy = color.label2rgb(label_maxima,
                                   copy,
                                   alpha=0.7,
                                   bg_label=0,
                                   bg_color=None,
                                   colors=[(1, 0, 0)])
        elif (morfoTry == 9):
            if (morfoGirisN):
                copy = cv2.cvtColor(copy, cv2.COLOR_BGR2GRAY)
            copy = exposure.rescale_intensity(copy)
            h = 0.05
            h_maxima = extrema.h_maxima(copy, h)
            label_h_maxima = measure.label(h_maxima)
            copy = color.label2rgb(label_h_maxima,
                                   copy,
                                   alpha=0.7,
                                   bg_label=0,
                                   bg_color=None,
                                   colors=[(1, 0, 0)])
        arg[1] = copy
        arg[2] = imageTemp
        cv2.imshow("org", copy)
        cv2.waitKey(0)
        cv2.destroyAllWindows()
        """
img = color.rgb2gray(
    io.imread('E:/OwnWork/Leaf/TestImage/Deliveryimage/1.jpg'))

# the rescaling is done only for visualization purpose.
# the algorithms would work identically in an unscaled version of the
# image. However, the parameter h needs to be adapted to the scale.
img = exposure.rescale_intensity(img)

##############################################################
# MAXIMA DETECTION

# Maxima in the galaxy image are detected by mathematical morphology.
# There is no a priori constraint on the density.

# We find all local maxima
local_maxima = extrema.local_maxima(img)
label_maxima = label(local_maxima)
overlay = color.label2rgb(label_maxima,
                          img,
                          alpha=0.7,
                          bg_label=0,
                          bg_color=None,
                          colors=[(1, 0, 0)])

# We observed in the previous image, that there are many local maxima
# that are caused by the noise in the image.
# For this, we find all local maxima with a height of h.
# This height is the gray level value by which we need to descent
# in order to reach a higher maximum and it can be seen as a local
# contrast measurement.
# The value of h scales with the dynamic range of the image, i.e.
Exemple #33
0
 def test_dtypes(self):
     """Test results with default configuration for all supported dtypes."""
     for dtype in self.supported_dtypes:
         result = extrema.local_maxima(self.image.astype(dtype))
         assert result.dtype == np.bool
         assert_equal(result, self.expected_default)
 def test_dtypes(self):
     """Test results with default configuration for all supported dtypes."""
     for dtype in self.supported_dtypes:
         result = extrema.local_maxima(self.image.astype(dtype))
         assert result.dtype == np.bool
         assert_equal(result, self.expected_default)
Exemple #35
0
from PIL import Image
from skimage.feature import peak_local_max


# %%
img = Image.open('C:\\Users\\Dell\\Desktop\\od_zacatku\\train_img\\train4.tiff')
imarray = np.array(img)
h = 0.3
x_0 = 70
y_0 = 354
width = 256
height = 256

imarray = exposure.rescale_intensity(imarray)

local_maxima = extrema.local_maxima(imarray)
label_maxima = label(local_maxima)
print(label_maxima.shape)
print(imarray.shape)
print(label_maxima.dtype)
print(imarray.dtype)

overlay = color.label2rgb(label_maxima, imarray, alpha=0.3, bg_label=0,
                          bg_color=None, colors=[(1, 0, 0)])


h_maxima = extrema.h_maxima(imarray, h)
label_h_maxima = label(h_maxima)
overlay_h = color.label2rgb(label_h_maxima, imarray, alpha=0.3, bg_label=0,
                            bg_color=None, colors=[(1, 0, 0)])
Exemple #36
0
img = color.rgb2gray(color_image)[y_0:(y_0 + height), x_0:(x_0 + width)]

# the rescaling is done only for visualization purpose.
# the algorithms would work identically in an unscaled version of the
# image. However, the parameter h needs to be adapted to the scale.
img = exposure.rescale_intensity(img)


##############################################################
# MAXIMA DETECTION

# Maxima in the galaxy image are detected by mathematical morphology.
# There is no a priori constraint on the density.

# We find all local maxima
local_maxima = extrema.local_maxima(img)
label_maxima = label(local_maxima)
overlay = color.label2rgb(label_maxima, img, alpha=0.7, bg_label=0,
                          bg_color=None, colors=[(1, 0, 0)])

# We observed in the previous image, that there are many local maxima
# that are caused by the noise in the image.
# For this, we find all local maxima with a height of h.
# This height is the gray level value by which we need to descent
# in order to reach a higher maximum and it can be seen as a local
# contrast measurement.
# The value of h scales with the dynamic range of the image, i.e.
# if we multiply the image with a constant, we need to multiply
# the value of h with the same constant in order to achieve the same result.
h = 0.05
h_maxima = extrema.h_maxima(img, h)
Exemple #37
0
def MPE(img, folder, original_img, YN_binary, nbOfRowPerPlot,
        nbOfColumnPerPlot, globalOrientation, noise, field_image, aff,
        y_offset, x_offset):
    ''' Identifies and crop the columns and the rows of the field.
    
    12 inputs:
        img: array of lists
            Binary image of the original image read in openCV
        folder: path
            Absolute path to the folder in which all is saved
        original_img: array of lists
            Original image read in openCV
        YN_binary: bolean
            Equals True if the original image is a binary
        nbOfRowPerPlot: int
            Number of row per microplot
        nbOfColumnPerPlot: int
            Number of column per microplot
        globalOrientation: str ('V' or 'H')
            Global orientation of the column as inputted by the user
        noise: int
            Noise removal value
        field_image: Path object
            absolute path to the original image
        aff: Affine object OR int (0)
            Affine transformation matrix associated with the original image
            georeferencement, project the calculated points into its CRS
            Equals zero if the original image is not georeferenced
        y_offset: int
            The vertical distance that has been cropped and should be considered
            for the coordinates calculation
        x_offset: int
            The horizontal distance that has been cropped and should be considered
            for the coordinates calculation
        
    Outputs: none
    Returns number if there is an error which will trigger a pop up displaying
    a message.
    Returns 'OK' if the end has been reached.
    
    '''

    #######################################################################
    ####################### ROTATE THE BINARY IMAGE #######################
    #######################################################################

    # get all coordinates of the white pixels i.e. plants
    coords_angle = np.column_stack(np.where(img > 0))
    # use these coordinates to compute a rotated bounding box that contains all
    # coordinates
    angle = cv2.minAreaRect(coords_angle)[-1]
    # the 'cv2.minAreaRect' function returns values in the
    # range [-90, 0[ ; we want it positive
    if angle < -45:
        angle = -(90 + angle)
    # otherwise, just take the inverse of the angle to make
    # it positive
    else:
        angle = -angle
    # if the rows are orginally horizontal, we want them to become vertical
    if globalOrientation == 'H':
        angle += 90

    print('ANGLE: ' + str(angle))

    img_binary = img.copy()
    img_rotated, add_y, add_x = rotate_bound(img.astype(np.uint8),
                                             angle,
                                             change_bigger=True)
    cv2.imwrite(str(folder / 'Binary_straight.jpg'), img_rotated)

    # make a skeleton of the binary image so that clusters will be in the
    # middle of the rows, then erode and dilate to erase weeds and connect
    # broken lines
    # parameters (horizontal array)
    param_binaryErosion = np.ones((1, 20))
    param_skeletonErosion = np.ones((1, 5))
    param_skeletonDil = np.ones((1, 100))
    # application
    binary_erode = morphology.binary_erosion(img_rotated,
                                             selem=param_binaryErosion)
    skeleton = morphology.skeletonize(
        (binary_erode * 1).astype(np.uint8)) * 255
    cv2.imwrite(str(folder / 'Skeleton_original.jpg'), skeleton)
    skeleton = morphology.binary_erosion(skeleton, selem=param_skeletonErosion)
    skeleton = morphology.binary_dilation(skeleton,
                                          selem=param_skeletonDil) * 255
    cv2.imwrite(str(folder / 'Skeleton_manipulated.jpg'), skeleton)

    #######################################################################
    ########################### GET THE COLUMNS ###########################
    #######################################################################

    # get local maxima on the whole binary picture
    local_maxima = extrema.local_maxima(skeleton)
    # sum the number of local maxima into a one-line array (i.e. number of
    # maxima in each column)
    sum_maxima = np.sum(local_maxima, axis=0).astype(float)
    # make a copy
    sum_maxima_nan = sum_maxima.copy()
    # replace 0 with NaN
    sum_maxima_nan[sum_maxima == 0] = np.nan
    # get the average number of maxmima for a column
    mean_line = np.nanmean(sum_maxima_nan)
    # erase all the values smaller than 1/3 of the average
    sum_maxima[sum_maxima < mean_line / 3] = 0
    # draw the columns and save the corner points of each column area
    img, cut_points, col_w, img_core_col = draw_separation_lines(
        sum_maxima, rows_img=img_rotated, col=True)

    # if no points have been detected, it means the code is not working as it is
    if cut_points == []:
        return ('1')

    # save the image with the columns delimited
    cv2.imwrite(str(folder / 'Binary_columns_straight.jpg'), img)
    cv2.imwrite(str(folder / 'Binary_core_columns.jpg'), img_core_col)

    ## rotate the points of the separation lines and get the lines equations
    center = (img_binary.shape[0] / 2, img_binary.shape[1] / 2)
    cut_points = np.array(cut_points)
    # subtraction of the black pixels which had been added for the rotation
    cut_points[:, :, 0] = cut_points[:, :, 0] - add_x
    cut_points[:, :, 1] = cut_points[:, :, 1] - add_y
    # rotate the points back into the original angle
    cut_points = rotate(center, cut_points, math.radians(angle))
    # get the line equations from points
    columns_a, columns_b = get_equations(cut_points)
    # rotate back the core column image
    img_core_col, _, _ = rotate_bound(img_core_col, -1 * angle)
    y = int((img_core_col.shape[0] - img_binary.shape[0]) / 2)
    x = int((img_core_col.shape[1] - img_binary.shape[1]) / 2)
    img_core_col = img_core_col[y:-y, x:-x]
    img_core_col = cv2.resize(img_core_col, img_binary.shape[::-1])
    cv2.imwrite(str(folder / 'Binary_core.jpg'), img_core_col)

    ## cut the columns
    # create all the needed directories / check if existent / delete if necessary
    if YN_binary == False:
        sub_folder_columnOriginal = folder / str('Plot_columns_original')
    sub_folder_columnBinary = folder / str('Plot_columns_binary')
    sub_folder_columnCoreBinary = folder / str('Plot_columns_core')
    if not (sub_folder_columnBinary.is_dir()):
        if YN_binary == False:
            sub_folder_columnOriginal.mkdir()
        sub_folder_columnBinary.mkdir()
        sub_folder_columnCoreBinary.mkdir()
    # initialization
    maxY, maxX = img_binary.shape
    c = str(0).zfill(2)  # only exists for saving names
    # for every detected column, with a step defined by the inputted number
    # nbOfColumnPerPlot in the GUI
    for k in range(0, len(columns_a), nbOfColumnPerPlot):
        # try first as it is (i.e. with that step value)
        try:
            n = nbOfColumnPerPlot - 1  #bc we want the end line
            pt1 = ((0 - columns_b[k][0]) / columns_a[k][0], 0)
            pt2 = ((0 - columns_b[k + n][1]) / columns_a[k + n][1], 0
                   )  #could have done [k+n+1][0] -> equivalent
            pt3 = ((maxY - columns_b[k + n][1]) / columns_a[k + n][1], maxY)
            pt4 = ((maxY - columns_b[k][0]) / columns_a[k][0], maxY)
            # all 4 points of one column, counter clock wise
            roi_corners = np.array([[pt1, pt2, pt3, pt4]], dtype=np.int32)
            # make a mask and crop out the current column
            mask = np.zeros(img_binary.shape, dtype=np.uint8)
            cv2.fillPoly(mask, roi_corners, (255, ))
            if YN_binary == False:
                column_original = cv2.bitwise_and(original_img,
                                                  original_img,
                                                  mask=mask)
                cv2.imwrite(
                    str(sub_folder_columnOriginal /
                        str('Plot_column_' + c + '_cropped.jpg')),
                    column_original)
            # apply the mask and save the images
            column_binary = cv2.bitwise_and(img_binary, img_binary, mask=mask)
            cv2.imwrite(
                str(sub_folder_columnBinary /
                    str('Plot_column_' + c + '_cropped.jpg')), column_binary)
            column_core = cv2.bitwise_and(img_core_col,
                                          img_core_col,
                                          mask=mask)
            cv2.imwrite(
                str(sub_folder_columnCoreBinary /
                    str('Plot_column_' + c + '_cropped.jpg')), column_core)
            c = str(int(c) + 1).zfill(2)
        # if the number inputed is not proportional to the detected number of columns
        # then do one by one for what is left
        except IndexError:
            # same as before but one detected column at a time
            for i in range(k, len(columns_a)):
                pt1 = ((0 - columns_b[i][0]) / columns_a[i][0], 0)
                pt2 = ((0 - columns_b[i][1]) / columns_a[i][1], 0)
                pt3 = ((maxY - columns_b[i][1]) / columns_a[i][1], maxY)
                pt4 = ((maxY - columns_b[i][0]) / columns_a[i][0], maxY)
                # 4 column points, counter clockwise
                roi_corners = np.array([[pt1, pt2, pt3, pt4]], dtype=np.int32)
                # mask making
                mask = np.zeros(img_binary.shape, dtype=np.uint8)
                cv2.fillPoly(mask, roi_corners, (255, ))
                if YN_binary == False:
                    column_original = cv2.bitwise_and(original_img,
                                                      original_img,
                                                      mask=mask)
                    cv2.imwrite(
                        str(sub_folder_columnOriginal /
                            str('Plot_column_' + str(c) + '_cropped.jpg')),
                        column_original)
                # applying mask and saving images
                column_binary = cv2.bitwise_and(img_binary, mask)
                cv2.imwrite(
                    str(sub_folder_columnBinary /
                        str('Plot_column_' + str(c) + '_cropped.jpg')),
                    column_binary)
                column_core = cv2.bitwise_and(img_core_col,
                                              img_core_col,
                                              mask=mask)
                cv2.imwrite(
                    str(sub_folder_columnCoreBinary /
                        str('Plot_column_' + c + '_cropped.jpg')), column_core)
                c = str(int(c) + 1).zfill(2)

    #######################################################################
    ############################# GET THE ROWS ############################
    #######################################################################

    # new angle to get the ROWS in a vertical state (i.e. columns are
    # oriented horizontally)
    angle_horiz = angle + 90
    print('Horizontal angle : ' + str(angle_horiz))

    # get all the files from the previous part, i.e. *binary* columns
    files = list(sub_folder_columnCoreBinary.glob('*.jpg'))
    # make all the necessary folders etc
    sub_folder_horizontalColumn = folder / 'Horizontal_columns'
    if YN_binary == False:
        sub_folder_rowOriginal = folder / str('Plot_rows_original')
        sub_folder_rowOriginalWhole = folder / str('Plot_rows_original_whole')
    else:
        sub_folder_rowOriginalWhole = folder / str('Plot_rows_binary_whole')
    sub_folder_rowBinary = folder / str('Plot_rows_binary')
    sub_folder_SHP = folder / str('SHP_files')
    if not (sub_folder_horizontalColumn.is_dir()):
        sub_folder_horizontalColumn.mkdir()
        if YN_binary == False:
            sub_folder_rowOriginal.mkdir()
            sub_folder_rowOriginalWhole.mkdir()
        sub_folder_rowBinary.mkdir()
        sub_folder_SHP.mkdir()

    # initialization
    maxY, maxX = img.shape
    nbOfRowPerColumn = 0
    intersection, intersection_geo = [], []
    nbOfColumn = len(columns_a)
    # for every file in the column file
    for nb in range(0, len(files)):
        # get the column number
        nb_column = str(nb).zfill(2)
        ## identify the rows
        # read the column file
        file_img = cv2.imread(str(files[nb]), 0)
        # rotate it until the column is horizontally oriented
        column_binary_rotate, add_y, add_x = rotate_bound(file_img,
                                                          angle_horiz,
                                                          change_bigger=True)
        # make the sum of all white pixels on one line
        sum_rows = np.sum(column_binary_rotate, axis=0).astype(float)
        # make a copy and replace 0 by nan to get the mean value of the sum without 0
        sum_rows_nan = sum_rows.copy()
        sum_rows_nan[sum_rows == 0] = np.nan
        mean_line = np.nanmean(sum_rows_nan)
        # erase the values smaller than half of the mean
        sum_rows[sum_rows < mean_line / 2] = 0
        # identify the rows with the changing pattern
        _, cut_points, w = draw_separation_lines(np.array(sum_rows),
                                                 rows_img=column_binary_rotate)

        # if not separation lines has been detected, the code is not working
        # as it is
        if cut_points == []:
            # save the output image with separation lines for rows
            return ('2')
        cv2.imwrite(
            str(sub_folder_horizontalColumn /
                str('Rows_horizontal_delimited_column_' + str(nb_column) +
                    '.jpg')), column_binary_rotate)

        ## get the points in the original angle
        # original center
        center = (img_binary.shape[0] / 2, img_binary.shape[1] / 2)
        cut_points = np.array(cut_points)
        # points without the added black border (in rotate_bound)
        cut_points[:, :, 0] = cut_points[:, :, 0] - add_x
        cut_points[:, :, 1] = cut_points[:, :, 1] - add_y
        # rotate the points
        cut_points = rotate(center, cut_points, math.radians(angle_horiz))
        # get equations based on the points
        rows_a, rows_b = get_equations(cut_points)

        # initialization of various counts
        c = str(0).zfill(2)  # for file names
        nbStartColumn = nb  # start detected column number
        nbEndColumn = int(
            nbStartColumn) + nbOfColumnPerPlot - 1  # end detected column
        print('Column nb: ' + str(nb_column))

        ### cut the rows
        # read the original column image
        current_column_binary = cv2.imread(
            str(sub_folder_columnBinary / files[nb].name), 0)
        if YN_binary == False:
            current_column_original = cv2.imread(
                str(sub_folder_columnOriginal / files[nb].name))
        else:
            current_column_original = cv2.imread(
                str(sub_folder_columnBinary / files[nb].name), 0)

        # get the number of rows in this column
        nbOfRowPerColumn += len(rows_a)

        # for every row in that column, with a step defined by the inputted
        # number nbOfRowPerPlot in the GUI
        for k in range(0, len(rows_a), nbOfRowPerPlot):
            # try with this step first
            try:
                ### get the cut points of the row
                n = nbOfRowPerPlot - 1  # bc we want the end line of the end row
                pt1 = ((0 - rows_b[k][0]) / rows_a[k][0], 0)
                pt2 = ((0 - rows_b[k + n][1]) / rows_a[k + n][1], 0
                       )  #[k+n+1][0] would NOT be equivalent
                pt3 = ((maxY - rows_b[k + n][1]) / rows_a[k + n][1], maxY)
                pt4 = ((maxY - rows_b[k][0]) / rows_a[k][0], maxY)
                # get all the points counter-clockwise
                roi_corners = np.array([[pt1, pt2, pt3, pt4]], dtype=np.int32)
                # fill a mask
                mask = np.zeros(file_img.shape, dtype=np.uint8)
                cv2.fillPoly(mask, roi_corners, (255, ))
                # apply the mask to the column images (binary)
                row_binary = cv2.bitwise_and(current_column_binary, mask)
                cv2.imwrite(
                    str(sub_folder_rowBinary /
                        str('Plot_column_' + str(nb_column) + '_row_' +
                            str(c) + '_cropped.jpg')), row_binary)
                # use a bounding box to only get the wanted part of the original
                # image i.e. the row and not all the black pixels around
                row_original = cv2.bitwise_and(current_column_original,
                                               current_column_original,
                                               mask=mask)
                if YN_binary == False:
                    # get the coords for which pixel value =/= 0
                    coords = np.argwhere(row_original)
                    # get the first pixels
                    x0, y0, z = coords.min(axis=0)
                    # get the last pixels
                    x1, y1, z = coords.max(axis=0) + 1
                    # crop
                    row_original_cropped = row_original[x0:x1, y0:y1]
                    # save
                    cv2.imwrite(
                        str(sub_folder_rowOriginal /
                            str('Plot_column_' + str(nb_column) + '_row_' +
                                str(c) + '_cropped.jpg')),
                        row_original_cropped)
                    cv2.imwrite(
                        str(sub_folder_rowOriginalWhole /
                            str('Plot_column_' + str(nb_column) + '_row_' +
                                str(c) + '_whole_pic.jpg')), row_original)
                # get the intersection of the lines between the considered
                # column and row (i.e. the 4 cropping points)
                inter, inter_geo = line_intersection(
                    columns_a[nbStartColumn], columns_a[nbEndColumn],
                    columns_b[nbStartColumn], columns_b[nbEndColumn],
                    rows_a[k], rows_a[k + n], rows_b[k], rows_b[k + n], aff,
                    y_offset, x_offset)
                # if the georeferenced points exist
                if type(inter_geo) != type(None):
                    # make the shp files out of the 4 corner points
                    make_shp(sub_folder_SHP, nb_column, c, inter_geo)
                    # prepare the array to be saved
                    inter_geo = [
                        item for sublist in inter_geo for item in sublist
                    ]
                    inter_geo.insert(0, c)
                    inter_geo.insert(0, nb_column)
                    intersection_geo.append(inter_geo)
                # if not georeference, use pixel values
                else:
                    # make the shp files out of the 4 corner point
                    make_shp(sub_folder_SHP, nb_column, c, inter)
                # get the points in a 8-elements list (no more tuples)
                inter = [item for sublist in inter for item in sublist]
                # insert row number at the begining
                inter.insert(0, c)
                # insert column number at the beginning
                inter.insert(0, nb_column)
                # "save" the list into "intersection" list
                intersection.append(inter)
                # add up 1 element for the next row
                c = str(int(c) + 1).zfill(2)
            # if the number inputed is not proportional to the detected
            # number of columns, then do one by one for what is left
            except IndexError:
                for i in range(k, len(rows_a)):
                    pt1 = ((0 - rows_b[i][0]) / rows_a[i][0], 0)
                    pt2 = ((0 - rows_b[i][1]) / rows_a[i][1], 0)
                    pt3 = ((maxY - rows_b[i][1]) / rows_a[i][1], maxY)
                    pt4 = ((maxY - rows_b[i][0]) / rows_a[i][0], maxY)
                    roi_corners = np.array([[pt1, pt2, pt3, pt4]],
                                           dtype=np.int32)
                    mask = np.zeros(img_binary.shape, dtype=np.uint8)
                    cv2.fillPoly(mask, roi_corners, (255, ))
                    row_binary = cv2.bitwise_and(current_column_binary,
                                                 current_column_binary,
                                                 mask=mask)
                    cv2.imwrite(
                        str(sub_folder_rowBinary /
                            str('Plot_column_' + str(nb_column) + '_row_' +
                                str(c) + '_cropped.jpg')), row_binary)
                    row_original = cv2.bitwise_and(current_column_original,
                                                   current_column_original,
                                                   mask=mask)
                    if YN_binary == False:
                        coords = np.argwhere(row_original)
                        x0, y0, z = coords.min(axis=0)
                        x1, y1, z = coords.max(
                            axis=0) + 1  # slices are exclusive at the top
                        row_original_cropped = row_original[x0:x1, y0:y1]
                        cv2.imwrite(
                            str(sub_folder_rowOriginal /
                                str('Plot_column_' + str(nb_column) + '_row_' +
                                    str(c) + '_cropped.jpg')),
                            row_original_cropped)
                        cv2.imwrite(
                            str(sub_folder_rowOriginalWhole /
                                str('Plot_column_' + str(nb_column) + '_row_' +
                                    str(c) + '_whole_pic.jpg')), row_original)
                    # get the intersection between column and row considered
                    inter, inter_geo = line_intersection(
                        columns_a[nbStartColumn], columns_a[nbEndColumn],
                        columns_b[nbStartColumn], columns_b[nbEndColumn],
                        rows_a[i], rows_a[i], rows_b[i], rows_b[i], aff,
                        y_offset, x_offset)
                    if type(inter_geo) != type(None):
                        # make the shp files out of the 4 corner points
                        make_shp(sub_folder_SHP, nb_column, c, inter_geo)
                        # prepare the array to be saved
                        inter_geo = [
                            item for sublist in inter_geo for item in sublist
                        ]
                        inter_geo.insert(0, c)
                        inter_geo.insert(0, nb_column)
                        intersection_geo.append(inter_geo)
                    # if not georeference, use pixel values
                    else:
                        # make the shp files out of the 4 corner point
                        make_shp(sub_folder_SHP, nb_column, c, inter)
                    inter = [item for sublist in inter for item in sublist]
                    inter.insert(0, c)
                    inter.insert(0, nb_column)
                    intersection.append(inter)
                    c = str(int(c) + 1).zfill(2)

    ### make a shp file with all individual shp merged
    # get all the shp absolute paths
    individual_shp_files = os.listdir(sub_folder_SHP)
    individual_shp_files = [
        str(sub_folder_SHP / f) for f in individual_shp_files if '.shp' in f
    ]
    # make a shp file with the meta of the individual shp
    meta = fiona.open(individual_shp_files[0]).meta
    # write all the individual shp into the merging file
    with fiona.open(folder / 'All_plots.shp', 'w', **meta) as output:
        for k in individual_shp_files:
            with fiona.open(k) as f:
                for features in f:
                    output.write(features)

    # get the average number of row per column
    nbOfRowPerColumn = nbOfRowPerColumn / nbOfColumn
    # save the metadata
    metadata(folder, field_image, noise, nbOfColumnPerPlot, nbOfRowPerPlot,
             globalOrientation, sub_folder_rowBinary, sub_folder_SHP, angle,
             nbOfColumn, nbOfRowPerColumn, intersection, aff, intersection_geo)
    return ('OK')
from skimage.morphology import watershed
from skimage.feature import peak_local_max
from skimage.morphology import extrema


# load dtm image
image = color.rgb2gray(io.imread('2092.jpg'))
xsize=image.shape[0]
ysize=image.shape[1]
#img=resize(img, (int(img.shape[0] / 6), int(img.shape[1] / 6)))

# k-means clustering of the image (population of pixels intensities)
#image = image.reshape((-1, 1))

distance = ndi.distance_transform_edt(image)
local_maxi = extrema.local_maxima(distance, image, np.ones((3, 3)))
markers = ndi.label(local_maxi)[0]
labels = watershed(-distance, markers, mask=image)

##distance = ndi.distance_transform_edt(image)
##local_maxi = peak_local_max(
##    distance, indices=False, footprint=np.ones((3, 3)), labels=image)
##markers = measure.label(local_maxi)
##labels_ws = watershed(-distance, markers, mask=image)

print(labels.shape)

X_clustered=labels

X_clustered.shape = image.shape
Exemple #39
0
ax[1].axis('off')
ax[1].set_title('Peak local max')

fig.tight_layout()

plt.show()

###########################################

#prepare image for h_maxima and local_maxima functions
img = color.rgb2gray(Color_Masked)
img = 255 - img
img = exposure.rescale_intensity(img)

#extract local maxima
local_maxima = extrema.local_maxima(img_gs_inv)
label_maxima = label(local_maxima)
overlay = color.label2rgb(label_maxima,
                          img_gs_inv,
                          alpha=0.7,
                          bg_label=0,
                          bg_color=None,
                          colors=[(1, 0, 0)])

#local maxima with certrain contrast
h = 0.05
ding = morphology.selem.disk(radius=3)
h_maxima = extrema.h_maxima(img, h, selem=ding)
label_h_maxima = label(h_maxima)
overlay_h = color.label2rgb(label_h_maxima,
                            img,