Exemple #1
0
def cluster_kmeans(n_samples):    
    rng = np.random.RandomState(9)
    kmeans = MiniBatchKMeans(n_clusters=2, random_state=rng, verbose=True, compute_labels=True)
    i = 0; 
    batch_size = 10
    
    while(i < n_samples):
        #partial fit 100 authors and there subsequent comparisons  
        print "k_means partial fitting, i = ", str(i)      
        data = extract_data(start=i, end=i+batch_size)
        data -= np.mean(data, axis=0)
        data /= np.std(data, axis=0)
        kmeans.partial_fit(data)
        i+=batch_size     
    print "fitting of one-third data finished."
    return kmeans
Exemple #2
0
def cluster_kmeans(n_samples):
    rng = np.random.RandomState(9)
    kmeans = MiniBatchKMeans(n_clusters=2,
                             random_state=rng,
                             verbose=True,
                             compute_labels=True)
    i = 0
    batch_size = 10

    while (i < n_samples):
        #partial fit 100 authors and there subsequent comparisons
        print "k_means partial fitting, i = ", str(i)
        data = extract_data(start=i, end=i + batch_size)
        data -= np.mean(data, axis=0)
        data /= np.std(data, axis=0)
        kmeans.partial_fit(data)
        i += batch_size
    print "fitting of one-third data finished."
    return kmeans