Exemple #1
0
  def supervised_separation(self, input_data, f, iter=50, adaptive_alpha=0, additional_basis=0):
    self.f=f    
    self.time_vec=input_data[:,0:1]
    self.adaptive_alpha=adaptive_alpha
    self.additional_basis=additional_basis
    input_data=input_data[:,1:].T
    baseline=input_data.min()
    input_data=input_data-baseline
          
    # Modify the input data based on the feature length
    data=pcnmf(feature_length=self.feature_length).matrix_conv(input_data)
    
    # Check the learning rate (adaptive_alpha) for each source (adaptive NMF)
    if isinstance(adaptive_alpha, int) or isinstance(adaptive_alpha, float):
      adaptive_alpha = np.ones(self.source_num)*adaptive_alpha
    else:
      if len(adaptive_alpha) != self.source_num:
        print("Error: The model has " +str(self.source_num) +" sources. Please specify adaptive_alpha for every source")
        return

    # Add additional basis for feature learning (semi-supervised NMF)
    if additional_basis>0:
      self.W_cluster=np.append(self.W_cluster, np.ones(additional_basis)*self.source_num)
      self.source_num=self.source_num+1
      self.basis_num=self.basis_num+additional_basis
      adaptive_alpha = np.append(adaptive_alpha, 1)
    
    # supervised NMF
    W, H = NMF_init(data, self.basis_num, init='random')
    W[:, 0:self.basis_num-additional_basis] = self.W

    violation=0
    Ht=H.T
    Ht = check_array(H.T, order='C')
    X = check_array(data, accept_sparse='csr')
    
    W = np.array(W)
    for run in range(iter):
      prev_W = np.array(W)
      # update H
      violation += basis_update(X.T, W=Ht, Ht=W, l1_reg=0, l2_reg=0, shuffle=False, random_state=None)
      # update W
      violation += basis_update(X, W=W, Ht=Ht, l1_reg=0, l2_reg=0, shuffle=False, random_state=None)
      
      for i in range(self.source_num):
        index = np.where(self.W_cluster == i)
        if adaptive_alpha[i] == 0:
          W[:,index] = prev_W[:,index]
        else:
          W[:,index] = prev_W[:,index]*(1-adaptive_alpha[i]) + W[:,index]*adaptive_alpha[i]

    self.W=W
    self.H=Ht.T
    self.nmf_output(input_data, self.time_vec, baseline)
Exemple #2
0
    def supervised_separation(self, input_data, f, iter=50):
        self.f = f
        self.time_vec = input_data[:, 0:1]
        input_data = input_data[:, 1:].T
        baseline = input_data.min()
        input_data = input_data - baseline

        # Modify the input data based the feature width
        print('Supervised NMF')
        data = self.matrix_conv(input_data)

        # supervised NMF
        W, H = NMF_init(data, self.basis_num, init='random')

        violation = 0
        Ht = H.T
        Ht = check_array(H.T, order='C')
        X = check_array(data, accept_sparse='csr')
        print('Learning temporal activitations...')
        for run in range(iter):
            W = self.W
            violation += basis_update(X.T,
                                      W=Ht,
                                      Ht=W,
                                      l1_reg=0,
                                      l2_reg=0,
                                      shuffle=False,
                                      random_state=None)
        self.H = Ht.T
        self.pcnmf_output(input_data, self.time_vec, baseline)
        self.time_vec = self.time_vec[:, 0]