def test_mice_additive_matrix(): rng = np.random.RandomState(0) n = 100 d = 10 A = rng.randn(n, d) B = rng.randn(n, d) X_filled = np.zeros(A.shape) for i in range(d): for j in range(d): X_filled[:, (i+j) % d] += (A[:, i] + B[:, j]) / 2 # a quarter is randomly missing nan_mask = rng.rand(n, d) < 0.25 X_missing = X_filled.copy() X_missing[nan_mask] = np.nan # split up data n = n // 2 X_train = X_missing[:n] X_test_filled = X_filled[n:] X_test = X_missing[n:] imputer = MICEImputer(n_imputations=25, n_burn_in=10, verbose=True, random_state=rng).fit(X_train) X_test_est = imputer.transform(X_test) assert_allclose(X_test_filled, X_test_est, atol=0.01)
def test_mice_additive_matrix(): rng = np.random.RandomState(0) n = 100 d = 10 A = rng.randn(n, d) B = rng.randn(n, d) X_filled = np.zeros(A.shape) for i in range(d): for j in range(d): X_filled[:, (i + j) % d] += (A[:, i] + B[:, j]) / 2 # a quarter is randomly missing nan_mask = rng.rand(n, d) < 0.25 X_missing = X_filled.copy() X_missing[nan_mask] = np.nan # split up data n = n // 2 X_train = X_missing[:n] X_test_filled = X_filled[n:] X_test = X_missing[n:] imputer = MICEImputer(n_imputations=25, n_burn_in=10, verbose=True, random_state=rng).fit(X_train) X_test_est = imputer.transform(X_test) assert_allclose(X_test_filled, X_test_est, atol=0.01)
def test_mice_transform_stochasticity(): rng = np.random.RandomState(0) n = 100 d = 10 X = sparse_random_matrix(n, d, density=0.10, random_state=rng).toarray() imputer = MICEImputer(missing_values=0, n_imputations=1, n_burn_in=1, random_state=rng) imputer.fit(X) X_fitted_1 = imputer.transform(X) X_fitted_2 = imputer.transform(X) # sufficient to assert that the means are not the same assert np.mean(X_fitted_1) != pytest.approx(np.mean(X_fitted_2))
def test_mice_missing_at_transform(strategy): rng = np.random.RandomState(0) n = 100 d = 10 X_train = rng.randint(low=0, high=3, size=(n, d)) X_test = rng.randint(low=0, high=3, size=(n, d)) X_train[:, 0] = 1 # definitely no missing values in 0th column X_test[0, 0] = 0 # definitely missing value in 0th column mice = MICEImputer(missing_values=0, n_imputations=1, n_burn_in=1, initial_strategy=strategy, random_state=rng).fit(X_train) initial_imputer = SimpleImputer(missing_values=0, strategy=strategy).fit(X_train) # if there were no missing values at time of fit, then mice will # only use the initial imputer for that feature at transform assert np.all(mice.transform(X_test)[:, 0] == initial_imputer.transform(X_test)[:, 0])
def test_mice_missing_at_transform(strategy): rng = np.random.RandomState(0) n = 100 d = 10 X_train = rng.randint(low=0, high=3, size=(n, d)) X_test = rng.randint(low=0, high=3, size=(n, d)) X_train[:, 0] = 1 # definitely no missing values in 0th column X_test[0, 0] = 0 # definitely missing value in 0th column mice = MICEImputer(missing_values=0, n_imputations=1, n_burn_in=1, initial_strategy=strategy, random_state=rng).fit(X_train) initial_imputer = SimpleImputer(missing_values=0, strategy=strategy).fit(X_train) # if there were no missing values at time of fit, then mice will # only use the initial imputer for that feature at transform assert np.all( mice.transform(X_test)[:, 0] == initial_imputer.transform(X_test)[:, 0])
def test_mice_transform_recovery(rank): rng = np.random.RandomState(0) n = 100 d = 100 A = rng.rand(n, rank) B = rng.rand(rank, d) X_filled = np.dot(A, B) # half is randomly missing nan_mask = rng.rand(n, d) < 0.5 X_missing = X_filled.copy() X_missing[nan_mask] = np.nan # split up data in half n = n // 2 X_train = X_missing[:n] X_test_filled = X_filled[n:] X_test = X_missing[n:] imputer = MICEImputer(n_imputations=10, n_burn_in=10, verbose=True, random_state=rng).fit(X_train) X_test_est = imputer.transform(X_test) assert_allclose(X_test_filled, X_test_est, rtol=1e-5, atol=0.1)