def test_randomized_lasso():
    """Check randomized lasso"""
    scaling = 0.3
    selection_threshold = 0.5

    # or with 1 alpha
    clf = RandomizedLasso(verbose=False, alpha=1, random_state=42,
                    scaling=scaling, selection_threshold=selection_threshold)
    feature_scores = clf.fit(X, y).scores_
    assert_equal(np.argsort(F)[-3:], np.argsort(feature_scores)[-3:])

    # or with many alphas
    clf = RandomizedLasso(verbose=False, alpha=[1, 0.8], random_state=42,
                    scaling=scaling, selection_threshold=selection_threshold)
    feature_scores = clf.fit(X, y).scores_
    assert_equal(clf.all_scores_.shape, (X.shape[1], 2))
    assert_equal(np.argsort(F)[-3:], np.argsort(feature_scores)[-3:])

    X_r = clf.transform(X)
    X_full = clf.inverse_transform(X_r)
    assert_equal(X_r.shape[1], np.sum(feature_scores > selection_threshold))
    assert_equal(X_full.shape, X.shape)

    clf = RandomizedLasso(verbose=False, alpha='aic', random_state=42,
                          scaling=scaling)
    feature_scores = clf.fit(X, y).scores_
    assert_equal(feature_scores, X.shape[1] * [1.])

    clf = RandomizedLasso(verbose=False, scaling=-0.1)
    assert_raises(ValueError, clf.fit, X, y)

    clf = RandomizedLasso(verbose=False, scaling=1.1)
    assert_raises(ValueError, clf.fit, X, y)
def test_randomized_lasso():
    # Check randomized lasso
    scaling = 0.3
    selection_threshold = 0.5

    # or with 1 alpha
    clf = RandomizedLasso(verbose=False, alpha=1, random_state=42,
                          scaling=scaling,
                          selection_threshold=selection_threshold)
    feature_scores = clf.fit(X, y).scores_
    assert_array_equal(np.argsort(F)[-3:], np.argsort(feature_scores)[-3:])

    # or with many alphas
    clf = RandomizedLasso(verbose=False, alpha=[1, 0.8], random_state=42,
                          scaling=scaling,
                          selection_threshold=selection_threshold)
    feature_scores = clf.fit(X, y).scores_
    assert_equal(clf.all_scores_.shape, (X.shape[1], 2))
    assert_array_equal(np.argsort(F)[-3:], np.argsort(feature_scores)[-3:])

    X_r = clf.transform(X)
    X_full = clf.inverse_transform(X_r)
    assert_equal(X_r.shape[1], np.sum(feature_scores > selection_threshold))
    assert_equal(X_full.shape, X.shape)

    clf = RandomizedLasso(verbose=False, alpha='aic', random_state=42,
                          scaling=scaling)
    feature_scores = clf.fit(X, y).scores_
    assert_array_equal(feature_scores, X.shape[1] * [1.])

    clf = RandomizedLasso(verbose=False, scaling=-0.1)
    assert_raises(ValueError, clf.fit, X, y)

    clf = RandomizedLasso(verbose=False, scaling=1.1)
    assert_raises(ValueError, clf.fit, X, y)
def test_randomized_lasso():
    # Check randomized lasso
    scaling = 0.3
    selection_threshold = 0.5
    n_resampling = 20

    # or with 1 alpha
    clf = RandomizedLasso(verbose=False,
                          alpha=1,
                          random_state=42,
                          scaling=scaling,
                          n_resampling=n_resampling,
                          selection_threshold=selection_threshold)
    feature_scores = clf.fit(X, y).scores_
    assert_array_equal(np.argsort(F)[-3:], np.argsort(feature_scores)[-3:])

    # or with many alphas
    clf = RandomizedLasso(verbose=False,
                          alpha=[1, 0.8],
                          random_state=42,
                          scaling=scaling,
                          n_resampling=n_resampling,
                          selection_threshold=selection_threshold)
    feature_scores = clf.fit(X, y).scores_
    assert_equal(clf.all_scores_.shape, (X.shape[1], 2))
    assert_array_equal(np.argsort(F)[-3:], np.argsort(feature_scores)[-3:])
    # test caching
    try:
        tempdir = mkdtemp()
        clf = RandomizedLasso(verbose=False,
                              alpha=[1, 0.8],
                              random_state=42,
                              scaling=scaling,
                              selection_threshold=selection_threshold,
                              memory=tempdir)
        feature_scores = clf.fit(X, y).scores_
        assert_equal(clf.all_scores_.shape, (X.shape[1], 2))
        assert_array_equal(np.argsort(F)[-3:], np.argsort(feature_scores)[-3:])
    finally:
        shutil.rmtree(tempdir)

    X_r = clf.transform(X)
    X_full = clf.inverse_transform(X_r)
    assert_equal(X_r.shape[1], np.sum(feature_scores > selection_threshold))
    assert_equal(X_full.shape, X.shape)

    clf = RandomizedLasso(verbose=False,
                          alpha='aic',
                          random_state=42,
                          scaling=scaling,
                          n_resampling=100)
    feature_scores = clf.fit(X, y).scores_
    assert_allclose(feature_scores, [1., 1., 1., 0.225, 1.], rtol=0.2)

    clf = RandomizedLasso(verbose=False, scaling=-0.1)
    assert_raises(ValueError, clf.fit, X, y)

    clf = RandomizedLasso(verbose=False, scaling=1.1)
    assert_raises(ValueError, clf.fit, X, y)
def test_randomized_lasso():
    # Check randomized lasso
    scaling = 0.3
    selection_threshold = 0.5
    n_resampling = 20

    # or with 1 alpha
    clf = RandomizedLasso(verbose=False, alpha=1, random_state=42,
                          scaling=scaling, n_resampling=n_resampling,
                          selection_threshold=selection_threshold)
    feature_scores = clf.fit(X, y).scores_
    assert_array_equal(np.argsort(F)[-3:], np.argsort(feature_scores)[-3:])

    # or with many alphas
    clf = RandomizedLasso(verbose=False, alpha=[1, 0.8], random_state=42,
                          scaling=scaling, n_resampling=n_resampling,
                          selection_threshold=selection_threshold)
    feature_scores = clf.fit(X, y).scores_
    assert_equal(clf.all_scores_.shape, (X.shape[1], 2))
    assert_array_equal(np.argsort(F)[-3:], np.argsort(feature_scores)[-3:])
    # test caching
    try:
        tempdir = mkdtemp()
        clf = RandomizedLasso(verbose=False, alpha=[1, 0.8], random_state=42,
                              scaling=scaling,
                              selection_threshold=selection_threshold,
                              memory=tempdir)
        feature_scores = clf.fit(X, y).scores_
        assert_equal(clf.all_scores_.shape, (X.shape[1], 2))
        assert_array_equal(np.argsort(F)[-3:], np.argsort(feature_scores)[-3:])
    finally:
        shutil.rmtree(tempdir)

    X_r = clf.transform(X)
    X_full = clf.inverse_transform(X_r)
    assert_equal(X_r.shape[1], np.sum(feature_scores > selection_threshold))
    assert_equal(X_full.shape, X.shape)

    clf = RandomizedLasso(verbose=False, alpha='aic', random_state=42,
                          scaling=scaling, n_resampling=100)
    feature_scores = clf.fit(X, y).scores_
    assert_allclose(feature_scores, [1., 1., 1., 0.225, 1.], rtol=0.2)

    clf = RandomizedLasso(verbose=False, scaling=-0.1)
    assert_raises(ValueError, clf.fit, X, y)

    clf = RandomizedLasso(verbose=False, scaling=1.1)
    assert_raises(ValueError, clf.fit, X, y)