Exemple #1
0
def _construct_edge_list_from_distance(X, k_neigh):
    """
    construct edge_list (numpy array) from kNN distance for single modality
    :param X -> numpy array: feature
    :param k_neigh -> int: # of neighbors
    :return: N * k_neigh numpy array
    """
    dis = cos_dis(X)
    dis = torch.Tensor(dis)
    _, k_idx = dis.topk(k_neigh, dim=-1, largest=False)
    return k_idx.numpy()
Exemple #2
0
def construct_H_with_KNN(X, k_neig=10, is_probH=False, m_prob=1):
    """
    init multi-scale hypergraph Vertex-Edge matrix from original node feature matrix
    :param X: N_object x feature_number
    :param K_neigs: the number of neighbor expansion
    :param is_probH: prob Vertex-Edge matrix or binary
    :param m_prob: prob
    :return: N_object x N_hyperedge
    """
    if len(X.shape) != 2:
        X = X.reshape(-1, X.shape[-1])

    dis_mat = cos_dis(X)
    H = construct_H_with_KNN_from_distance(dis_mat, k_neig, is_probH, m_prob)
    return H
Exemple #3
0
def construct_H_with_KNN(X, K_neigs=[10], is_probH=False, m_prob=1):
    """
    init multi-scale hypergraph Vertex-Edge matrix from original node feature matrix
    :param X: N_object x feature_number
    :param K_neigs: the number of neighbor expansion
    :param is_probH: prob Vertex-Edge matrix or binary
    :param m_prob: prob
    :return: N_object x N_hyperedge
    """
    if len(X.shape) != 2:
        X = X.reshape(-1, X.shape[-1])

    if type(K_neigs) == int:
        K_neigs = [K_neigs]

    dis_mat = cos_dis(X)
    H = None
    for k_neig in K_neigs:
        H_tmp = construct_H_with_KNN_from_distance(dis_mat, k_neig, is_probH, m_prob)
        H = hyperedge_concat(H, H_tmp)
    return H