Exemple #1
0
class PrecisionRecallCurve(CurveFabric):
    def __init__(self, col_score, col_target, name=None, **kwargs):
        super().__init__(col_score, col_target, name=name)
        self.precision = None
        self.recall = None
        self.average_precision = None

    def fit(self, df):
        self.precision, self.recall, _ = precision_recall_curve(
            df[self.col_target], df[self.col_score])
        self.average_precision = average_precision_score(
            df[self.col_target], df[self.col_score])
        return self

    def plot(self, ax=None, title=None, **kwargs):

        if ax is None:
            fig, ax = plt.subplots()
        self.ax = ax

        self.viz = PrecisionRecallDisplay(
            precision=self.precision,
            recall=self.recall,
            average_precision=self.average_precision,
            estimator_name=self.name)

        if title:
            ax.set_title(title, fontsize=14, fontweight='bold')

        self.viz.plot(ax=ax, name=self.name, **kwargs)
        return self
Exemple #2
0
 def plotPrecisionRecallCurve(self, titleAdd: str = None):
     from sklearn.metrics import PrecisionRecallDisplay  # only supported by newer versions of sklearn
     if not self._probabilitiesAvailable:
         raise Exception("Precision-recall curve requires probabilities")
     if not self.isBinary:
         raise Exception(
             "Precision-recall curve is not applicable to non-binary classification"
         )
     probabilities = self.y_predictedClassProbabilities[
         self.binaryPositiveLabel]
     precision, recall, thresholds = precision_recall_curve(
         y_true=self.y_true,
         probas_pred=probabilities,
         pos_label=self.binaryPositiveLabel)
     disp = PrecisionRecallDisplay(precision, recall)
     disp.plot()
     ax: plt.Axes = disp.ax_
     ax.set_xlabel("recall")
     ax.set_ylabel("precision")
     title = "Precision-Recall Curve"
     if titleAdd is not None:
         title += "\n" + titleAdd
     ax.set_title(title)
     ax.xaxis.set_major_locator(plticker.MultipleLocator(base=0.1))
     ax.yaxis.set_major_locator(plticker.MultipleLocator(base=0.1))
     return disp.figure_
 def evaluate(self, x_test, y_test):
     y_pred = self.model.predict(x_test)
     y_pred = [1 * (x[0] >= 0.5) for x in y_pred]
     print('MLP performance on test for', self.feature_name)
     print('Accuracy:', accuracy_score(y_test, y_pred), 'Precision:',
           precision_score(y_test, y_pred), 'Recall:',
           recall_score(y_test, y_pred))
     # Confusion matrix
     cm = confusion_matrix(y_test, y_pred)
     cm_display = ConfusionMatrixDisplay(cm)
     # Precision recall
     precision, recall, _ = precision_recall_curve(y_test, y_pred)
     pr_display = PrecisionRecallDisplay(precision=precision, recall=recall)
     # Roc
     fpr, tpr, _ = roc_curve(y_test, y_pred)
     roc_display = RocCurveDisplay(fpr=fpr, tpr=tpr)
     # Figure
     figure: Figure = plt.figure(1, figsize=(15, 6))
     figure.suptitle('MLP on {}'.format(self.feature_name), fontsize=20)
     (ax1, ax2, ax3) = figure.subplots(1, 3)
     ax1.set_title('Confusion matrix')
     cm_display.plot(ax=ax1)
     ax2.set_title('Precision recall')
     pr_display.plot(ax=ax2)
     ax3.set_title('Roc curve')
     roc_display.plot(ax=ax3)
     file_name = '{}-mlp.png'.format(self.feature_name)
     figure.savefig(
         os.path.join(get_folder_path_from_root('images'), file_name))
     plt.show()
def test_default_labels(pyplot, average_precision, estimator_name, expected_label):
    prec = np.array([1, 0.5, 0])
    recall = np.array([0, 0.5, 1])
    disp = PrecisionRecallDisplay(
        prec, recall, average_precision=average_precision, estimator_name=estimator_name
    )
    disp.plot()
    assert disp.line_.get_label() == expected_label
def plot_ap(y_true, y_pred_proba):
    # AP curve
    aps = average_precision_score(y_true, y_pred_proba)
    precision, recall, _ = precision_recall_curve(y_true, y_pred_proba)
    disp = PrecisionRecallDisplay(precision=precision,
                                  recall=recall,
                                  average_precision=aps,
                                  estimator_name=None)
    disp.plot()
    return disp.figure_
Exemple #6
0
def gold_scores(alignment):
    pairs = read(alignment.l2_fn.name)

    for score in alignment.scores:
        gold_df = score['df'].copy()

        gold_df[gold_df.columns] = 0

        for x, y in pairs:
            gold_df.loc[x, y] = 1

        true_values = gold_df.to_numpy().flatten()
        pred_values = score['df'].to_numpy().flatten()

        print('-------')
        print(score['id'])
        print('spearman')
        rho, p_value = stats.spearmanr(pred_values.argsort(),
                                       true_values.argsort())
        print(rho)
        print(p_value)
        print('kendall tau')
        tau, p_value = stats.kendalltau(pred_values.argsort(),
                                        true_values.argsort())
        print(tau)
        print(p_value)
        print('-------')

        precision, recall, _ = metrics.precision_recall_curve(
            true_values, pred_values)
        disp = PrecisionRecallDisplay(precision, recall, 0, score['id'])
        disp.plot()
        a = score['id']
        plt.savefig(f'plots/{a}.png')
        plt.close()

        # roc_auc = metrics.auc(precision, recall)

        # plt.title('Precision-recall curve')
        # plt.plot(precision, recall, 'b', label = 'AUC = %0.2f' % roc_auc)
        # plt.legend(loc = 'lower right')
        # plt.plot([0, 1], [0, 1],'r--')
        # plt.xlim([0, 1])
        # plt.ylim([0, 1])
        # plt.ylabel('Recall')
        # plt.xlabel('Precision')
        # a = score['id']
        # plt.savefig(f'{a}.png')
        # plt.close()

        print('boa')


# print(read('salsa'))
def test_default_labels(pyplot, average_precision, estimator_name,
                        expected_label):
    """Check the default labels used in the display."""
    precision = np.array([1, 0.5, 0])
    recall = np.array([0, 0.5, 1])
    display = PrecisionRecallDisplay(
        precision,
        recall,
        average_precision=average_precision,
        estimator_name=estimator_name,
    )
    display.plot()
    assert display.line_.get_label() == expected_label
Exemple #8
0
    def plot(self, ax=None, figsize=(10, 5)):
        if ax is None:
            fig, ax = plt.subplots(1, 1, figsize=figsize)

        ax.set_title("Precision Recall Curve")
        possible_colors = GeneralUtils.shuffled_colors()
        for class_index, label in enumerate(self.labels):
            precision = self._recall_precision_curve[label]['precision']
            recall = self._recall_precision_curve[label]['recall']
            average_precision = self._average_precision[label]

            viz = PrecisionRecallDisplay(precision=precision,
                                         recall=recall,
                                         average_precision=average_precision,
                                         estimator_name='Classifier')

            viz.plot(ax=ax, name=label, color=possible_colors[class_index])
Exemple #9
0
 def precision_recall_curve(self, fig_name):
     precision, recall, thresholds = precision_recall_curve(
         self.label, self.pred)
     max_f1 = 0
     max_f2 = 0
     max_threshold = 0
     for p, r, tr in zip(precision, recall, thresholds):
         f1 = self.f1_score(p, r)
         f2 = self.f2_score(p, r)
         if f1 >= max_f1:
             max_f1 = f1
             max_threshold = tr
         if f2 >= max_f2:
             max_f2 = f2
     viz = PrecisionRecallDisplay(precision=precision, recall=recall)
     viz.plot()
     if os.path.isdir(self.output_dir):
         fig_path = os.path.join(self.output_dir, fig_name)
         plt.savefig(fig_path)
         plt.close()
     detail = self.f1_details(max_threshold)
     return round(max_f1, 3), round(max_f2, 3), detail, max_threshold
Exemple #10
0
                                  f"{img_path}{img_name}"].to_numpy()[0][-1])
        y_preds.append(0)
        #If there was an object and no bounding box  was found then it's false negative
        if test_images.loc[test_images['PATH'] == f"{img_path}{img_name}",
                           ['class']].iloc[0].to_numpy()[0] == 1:

            false_negatives += 1
            all += 1
        else:
            true_negatives += 1
            all += 1

    print(f"False Negatives {false_negatives} \n"
          f"True  Negatives {true_negatives} \n"
          f"True  Positives {true_positives} \n"
          f"False Positives {false_positives}")
    #cv2.imshow('img', img)
    #cv2.waitKey(0)
    cv2.imwrite('./results_imgs/{}.png'.format(idx), img)

#Calculate mAP
mAP = average_precision_score(y_true, y_preds)

print(f"Model's mAP: {mAP}")

precision, recall, thresholds = precision_recall_curve(y_true, y_preds)

disp = PrecisionRecallDisplay(precision=precision, recall=recall)
disp.plot()
plt.show()
fpr, tpr, _ = roc_curve(y_test, y_score, pos_label=clf.classes_[1])
roc_display = RocCurveDisplay(fpr=fpr, tpr=tpr).plot()

# %%
# Create :class:`PrecisionRecallDisplay`
##############################################################################
# Similarly, the precision recall curve can be plotted using `y_score` from
# the prevision sections.
from sklearn.metrics import precision_recall_curve
from sklearn.metrics import PrecisionRecallDisplay

prec, recall, _ = precision_recall_curve(y_test, y_score, pos_label=clf.classes_[1])
pr_display = PrecisionRecallDisplay(precision=prec, recall=recall).plot()

# %%
# Combining the display objects into a single plot
##############################################################################
# The display objects store the computed values that were passed as arguments.
# This allows for the visualizations to be easliy combined using matplotlib's
# API. In the following example, we place the displays next to each other in a
# row.

# sphinx_gallery_thumbnail_number = 4
import matplotlib.pyplot as plt

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 8))

roc_display.plot(ax=ax1)
pr_display.plot(ax=ax2)
plt.show()
Exemple #12
0
# A "micro-average": quantifying score on all classes jointly
precision["micro"], recall["micro"], _ = precision_recall_curve(
    Y_test.ravel(), y_score.ravel())
average_precision["micro"] = average_precision_score(Y_test,
                                                     y_score,
                                                     average="micro")

# %%
# Plot the micro-averaged Precision-Recall curve
# ..............................................
display = PrecisionRecallDisplay(
    recall=recall["micro"],
    precision=precision["micro"],
    average_precision=average_precision["micro"],
)
display.plot()
_ = display.ax_.set_title("Micro-averaged over all classes")

# %%
# Plot Precision-Recall curve for each class and iso-f1 curves
# ............................................................
import matplotlib.pyplot as plt
from itertools import cycle

# setup plot details
colors = cycle(["navy", "turquoise", "darkorange", "cornflowerblue", "teal"])

_, ax = plt.subplots(figsize=(7, 8))

f_scores = np.linspace(0.2, 0.8, num=4)
lines, labels = [], []
if __name__ == '__main__':
    x_train, x_test, y_train, y_test = get_dataset()
    model = LogisticRegression(multi_class='ovr')
    model.fit(x_train, y_train)
    b_y = label_binarize(y_test, classes=[0, 1, 2])
    y_scores = model.predict_proba(x_test)
    print(y_scores)
    for i in range(len(np.unique(y_test))):
        precision, recall, _ = p_r_curve(b_y[:, i], y_scores[:, i])
        ap = compute_ap(recall, precision)
        plt.plot(recall,
                 precision,
                 drawstyle="steps-post",
                 label=f'Precision-recall for class {i} (AP = {ap})')
    plt.xlabel("Recall")
    plt.ylabel("Precision")
    plt.title("Precision-Recall curve by ours")
    plt.legend(loc="lower left")
    # 通过sklear方法进行绘制

    _, ax = plt.subplots()
    for i in range(len(np.unique(y_test))):
        precision, recall, _ = p_r_curve(b_y[:, i], y_scores[:, i])
        ap = compute_ap(recall, precision)
        display = PrecisionRecallDisplay(recall=recall,
                                         precision=precision,
                                         average_precision=ap)
        display.plot(ax=ax, name=f"Precision-recall for class {i}")
    ax.set_title("Precision-Recall curve by sklearn")
    plt.show()
Exemple #14
0
def create_visualization(model, X_test, Y_test, title="Model Metrics"):
    """Compute the metrics and creates the figures used for model visualization.

    Parameters
    ----------
    model: The trained model to get the metrics from

    X_test: Data used to evaluate the model

    Y_test: Data labels for the evaluation data

    title: Title of the figure on which visualizations will be drawn
    """
    try:
        Y_probabilities = model.predict_proba(X_test)
    except AttributeError:
        # Must be an SVM w/o probability=True
        Y_probabilities = model.decision_function(X_test)

    figure, axes = plt.subplots(ncols=3, figsize=(16, 5))
    figure.suptitle(title)

    # Plot confusion matrix
    labels = unique_labels(Y_test)
    plot_confusion_matrix(model,
                          X_test,
                          Y_test,
                          ax=axes[0],
                          normalize="true",
                          labels=labels)

    # Plot precision-recall and ROC curve for each class
    for index, class_label in enumerate(labels):
        # Plot precision-recall curve
        precision, recall, _ = precision_recall_curve(Y_test,
                                                      Y_probabilities[:,
                                                                      index],
                                                      pos_label=class_label)

        name = f"class {int(class_label)}"
        viz = PrecisionRecallDisplay(precision=precision,
                                     recall=recall,
                                     estimator_name=name)
        viz.plot(ax=axes[1], name=name)

        # Plot ROC curve
        fpr, tpr, _ = roc_curve(Y_test,
                                Y_probabilities[:, index],
                                pos_label=class_label)
        roc_auc = auc(fpr, tpr)

        viz = RocCurveDisplay(fpr=fpr,
                              tpr=tpr,
                              roc_auc=roc_auc,
                              estimator_name=name)
        viz.plot(ax=axes[2], name=name)

    precisions, recalls, fscores, supports = precision_recall_fscore_support(
        Y_test, model.predict(X_test))

    for index, (precision, recall, fscore, support) in enumerate(
            zip(precisions, recalls, fscores, supports)):
        print(
            f"class {index} - precision: {precision:0.4f}, recall: {recall:0.4f}",
            f"fscore: {fscore:0.4f}, support: {support}",
        )