Exemple #1
0
    def predict(self, X, only_mean=False):
        #         X = check_array(X, accept_sparse='csr')
        X = np.array(X)
        X = self.normalize(X)
        neigh_dist, neigh_ind = self.kneighbors(X)
        weights = _get_weights(neigh_dist, self.weights)
        _y = self._y
        if _y.ndim == 1:
            _y = _y.reshape((-1, 1))

        if weights is None:
            y_pred = np.mean(_y[neigh_ind], axis=1)
        else:
            y_pred = np.empty((X.shape[0], _y.shape[1]), dtype=np.float64)
            denom = np.sum(weights, axis=1)
            for j in range(_y.shape[1]):
                num = np.sum(_y[neigh_ind, j] * weights, axis=1)
                y_pred[:, j] = num / denom

        if self._y.ndim == 1:
            y_pred = y_pred.ravel()
        if only_mean:
            return y_pred
        else:
            return y_pred, np.amin(neigh_dist, axis=1)
Exemple #2
0
    def predict(self, X):
        """Predict the class labels for the provided data

        Parameters
        ----------
        X: array
            A 2-D array representing the test points.

        Returns
        -------
        labels: array
            List of class labels (one for each data sample).
        """
        X = np.atleast_2d(X)

        neigh_dist, neigh_ind = self.kneighbors(X)
        pred_labels = self._y[neigh_ind]

        weights = _get_weights(neigh_dist, self.weights)

        if weights is None:
            mode, _ = smart_mode(pred_labels, axis=1)
        else:
            mode, _ = weighted_mode(pred_labels, weights, axis=1)

        return mode.flatten().astype(np.int)
Exemple #3
0
    def predict_proba(self, X):
        """Return probability estimates for the test data X.

        Parameters
        ----------
        X : sktime-format pandas dataframe or array-like, shape (n_query, n_features), \
                or (n_query, n_indexed) if metric == 'precomputed'
            Test samples.

        Returns
        -------
        p : array of shape = [n_samples, n_classes], or a list of n_outputs
            of such arrays if n_outputs > 1.
            The class probabilities of the input samples. Classes are ordered
            by lexicographic order.
        """
        X = check_data_sktime_tsc(X)
        temp = check_array.__code__
        check_array.__code__ = _check_array_ts.__code__

        X = check_array(X, accept_sparse='csr')

        neigh_dist, neigh_ind = self.kneighbors(X)

        classes_ = self.classes_
        _y = self._y
        if not self.outputs_2d_:
            _y = self._y.reshape((-1, 1))
            classes_ = [self.classes_]

        n_samples = X.shape[0]

        weights = _get_weights(neigh_dist, self.weights)
        if weights is None:
            weights = np.ones_like(neigh_ind)

        all_rows = np.arange(X.shape[0])
        probabilities = []
        for k, classes_k in enumerate(classes_):
            pred_labels = _y[:, k][neigh_ind]
            proba_k = np.zeros((n_samples, classes_k.size))

            # a simple ':' index doesn't work right
            for i, idx in enumerate(pred_labels.T):  # loop is O(n_neighbors)
                proba_k[all_rows, idx] += weights[:, i]

            # normalize 'votes' into real [0,1] probabilities
            normalizer = proba_k.sum(axis=1)[:, np.newaxis]
            normalizer[normalizer == 0.0] = 1.0
            proba_k /= normalizer

            probabilities.append(proba_k)

        if not self.outputs_2d_:
            probabilities = probabilities[0]

        check_array.__code__ = temp
        return probabilities
Exemple #4
0
    def predict(self, X, idx=None):

        neigh_dist, neigh_ind = self.kneighbors(X, idx)
        pred_labels = self._y[neigh_ind]

        weights = _get_weights(neigh_dist, self.weights)

        if weights is None:
            mode, _ = smart_mode(pred_labels, axis=1)
        else:
            mode, _ = weighted_mode(pred_labels, weights)

        return mode.flatten().astype(np.int)
Exemple #5
0
    def _impute(self, dist, X, fitted_X, mask, mask_fx):
        """Helper function to find and impute missing values"""

        # For each column, find and impute
        n_rows_X, n_cols_X = X.shape
        for c in range(n_cols_X):
            if not np.any(mask[:, c], axis=0):
                continue

            # Row index for receivers and potential donors (pdonors)
            receivers_row_idx = np.where(mask[:, c])[0]
            pdonors_row_idx = np.where(~mask_fx[:, c])[0]

            # Impute using column mean if n_neighbors are not available
            if len(pdonors_row_idx) < self.n_neighbors:
                warnings.warn("Insufficient number of neighbors! "
                              "Filling in column mean.")
                X[receivers_row_idx, c] = self.statistics_[c]
                continue

            # Get distance from potential donors
            dist_pdonors = dist[receivers_row_idx][:, pdonors_row_idx]
            dist_pdonors = dist_pdonors.reshape(-1, len(pdonors_row_idx))

            # Argpartition to separate actual donors from the rest
            pdonors_idx = np.argpartition(dist_pdonors,
                                          self.n_neighbors - 1,
                                          axis=1)

            # Get final donors row index from pdonors
            donors_idx = pdonors_idx[:, :self.n_neighbors]

            # Get weights or None
            dist_pdonors_rows = np.arange(len(donors_idx))[:, None]
            weight_matrix = _get_weights(
                dist_pdonors[dist_pdonors_rows, donors_idx], self.weights)
            donor_row_idx_ravel = donors_idx.ravel()

            # Retrieve donor values and calculate kNN score
            fitted_X_temp = fitted_X[pdonors_row_idx]
            donors = fitted_X_temp[donor_row_idx_ravel, c].reshape(
                (-1, self.n_neighbors))
            donors_mask = _get_mask(donors, self.missing_values)
            donors = np.ma.array(donors, mask=donors_mask)

            # Final imputation
            imputed = np.ma.average(donors, axis=1, weights=weight_matrix)
            X[receivers_row_idx, c] = imputed.data
        return X
Exemple #6
0
    def predict(self, X, idx=None):

        neigh_dist, neigh_ind = self.kneighbors(X,idx)
        pred_labels = self._y[neigh_ind]

        weights = _get_weights(neigh_dist, self.weights)

        if weights is None:
            mode, _ = stats.mode(pred_labels, axis=1)
        else:
            # Randomly permute the neighbors to tie-break randomly if necessary
            perm = np.random.permutation(n_neighbors)
            ind = ind[perm]
            mode, _ = weighted_mode(pred_labels,weights,axis)
            
        return mode.flatten().astype(np.int)
    def predict(self, X, n_neighbors=None):
        """Predict the class labels for the provided data.
        Parameters
        ----------
        X : array-like, shape (n_queries, n_features), \
                or (n_queries, n_indexed) if metric == 'precomputed'
            Test samples.
        Returns
        -------
        y : array of shape [n_queries] or [n_queries, n_outputs]
            Class labels for each data sample.
        """
        if n_neighbors is not None:
            self.n_neighbors = n_neighbors

        X = check_array(X, accept_sparse='csr')
        X = X.astype(np.float32)

        neigh_dist, neigh_ind = self.kneighbors(X)

        classes_ = self.classes_
        _y = self.train_label
        if not self.outputs_2d_:
            _y = self.train_label.reshape((-1, 1))
            classes_ = [self.classes_]

        n_outputs = len(classes_)
        n_queries = X.shape[0]
        weights = _get_weights(neigh_dist, self.weights)

        y_pred = np.empty((n_queries, n_outputs), dtype=classes_[0].dtype)
        for k, classes_k in enumerate(classes_):
            if weights is None:
                mode, _ = stats.mode(_y[neigh_ind, k], axis=1)
            else:
                mode, _ = weighted_mode(_y[neigh_ind, k], weights, axis=1)

            mode = np.asarray(mode.ravel(), dtype=np.intp)
            y_pred[:, k] = classes_k.take(mode)

        if not self.outputs_2d_:
            y_pred = y_pred.ravel()

        return y_pred

        return y_pred
Exemple #8
0
    def predict(self, X):
        """Predict the target for the provided data
        It fits a weighted least squares linear model locally for the nearest neighbors
        Parameters
        ----------
        X : array-like, shape (n_query, n_features), \
                or (n_query, n_indexed) if metric == 'precomputed'
            Test samples.
        Returns
        -------
        y : array of int, shape = [n_samples] or [n_samples, n_outputs]
            Target values
        """
        X = check_array(X, accept_sparse='csr')

        # NN of X with respect to the train data (_fit_X)
        neigh_dist, neigh_ind = self.kneighbors(X)

        weights = _get_weights(neigh_dist, self.weights)

        _y = self._y
        _fit_X = self._fit_X
        if _y.ndim == 1:
            _y = _y.reshape((-1, 1))

        y_pred = np.empty((X.shape[0], 1), dtype=np.float64)

        # NN in the train data
        X_nn = np.squeeze(_fit_X[neigh_ind])
        y_nn = np.squeeze(_y[neigh_ind])

        # loop over the samples, not ideal from a speed point of view
        for i in range(X_nn.shape[0]):
            linear = skl_lm.LinearRegression()
            if weights is not None:
                linear.fit(X_nn[i].reshape(-1, 1),
                           y_nn[i],
                           sample_weight=weights[i])
            else:
                linear.fit(X_nn[i].reshape(-1, 1), y_nn[i])
            y_pred[i] = linear.predict(X[i].reshape(-1, 1))

        if self._y.ndim == 1:
            y_pred = y_pred.ravel()

        return y_pred
    def predict(self, X):

        """Predict the class labels for the provided data

        Parameters
        ----------
        X : sktime-format pandas dataframe or array-like, shape (n_query, n_features), \
                or (n_query, n_indexed) if metric == 'precomputed'
            Test samples.

        Returns
        -------
        y : array of shape [n_samples] or [n_samples, n_outputs]
            Class labels for each data sample.
        """
        X = check_data_sktime_tsc(X, dim_to_use=self.dim_to_use)
        temp = check_array.__code__
        check_array.__code__ = _check_array_ts.__code__
        neigh_dist, neigh_ind = self.kneighbors(X)
        classes_ = self.classes_
        _y = self._y
        if not self.outputs_2d_:
            _y = self._y.reshape((-1, 1))
            classes_ = [self.classes_]

        n_outputs = len(classes_)
        n_samples = X.shape[0]
        weights = _get_weights(neigh_dist, self.weights)

        y_pred = np.empty((n_samples, n_outputs), dtype=classes_[0].dtype)
        for k, classes_k in enumerate(classes_):
            if weights is None:
                mode, _ = stats.mode(_y[neigh_ind, k], axis=1)
            else:
                mode, _ = weighted_mode(_y[neigh_ind, k], weights, axis=1)

            mode = np.asarray(mode.ravel(), dtype=np.intp)
            y_pred[:, k] = classes_k.take(mode)

        if not self.outputs_2d_:
            y_pred = y_pred.ravel()

        check_array.__code__ = temp
        return y_pred
Exemple #10
0
    def predict(self, X):
        """Predict the class labels for the provided data

        Parameters
        ----------
        X : array-like, shape (n_ts, sz, d)
            Test samples.
        """
        X_ = to_time_series_dataset(X)
        neigh_dist, neigh_ind = self.kneighbors(X_)

        weights = _get_weights(neigh_dist, self.weights)

        if weights is None:
            mode, _ = stats.mode(self._fit_y[neigh_ind], axis=1)
        else:
            mode, _ = weighted_mode(self._fit_y[neigh_ind], weights, axis=1)

        return mode[:, 0]
    def predict(self, X):
        """Predict the target for the provided data
        Parameters
        ----------
        X : array-like, shape (n_query, n_features), \
                or (n_query, n_indexed) if metric == 'precomputed'
            Test samples.
        Returns
        -------
        y : array of int, shape = [n_samples] or [n_samples, n_outputs]
            Target values
        """
        if issparse(X) and self.metric == 'precomputed':
            raise ValueError(
                "Sparse matrices not supported for prediction with "
                "precomputed kernels. Densify your matrix.")
            X = check_array(X, accept_sparse='csr')

        neigh_dist, neigh_ind = self.kneighbors(X)

        weights = _get_weights(neigh_dist, self.weights)

        _y = self._y
        if _y.ndim == 1:
            _y = _y.reshape((-1, 1))

        if weights is None:
            y_pred = np.median(_y[neigh_ind], axis=1)
        else:
            weights = weights / weights.sum()
            num = _y[neigh_ind.flatten()].T * weights
            cs = list(np.cumsum(num.flatten()))
            ind = np.searchsorted(cs, cs[-1] / 2.0)
            y_pred = _y[ind]

        if self._y.ndim == 1:
            y_pred = y_pred.ravel()
        return y_pred
Exemple #12
0
    def predict(self, X):
        """Predict the class labels for the provided data

        Parameters
        ----------
        X : array-like, shape (n_ts, sz, d)
            Test samples.
        """
        if self.metric == "min_dist" and self.variables_size > 1:
            X_ = X
        else:
            X_ = to_time_series_dataset(X,self.variables_size)

        neigh_dist, neigh_ind = self.kneighbors(X_,self.multivariate_output,None,True)

        weights = _get_weights(neigh_dist, self.weights)

        if weights is None:
            mode, _ = stats.mode(self._fit_y[neigh_ind], axis=1)
        else:
            mode, _ = weighted_mode(self._fit_y[neigh_ind], weights, axis=1)

        return mode[:, 0]