def train_mimic(self, training_data, mimic_env, save_model_dir, log_file):
        self.model = DecisionTreeRegressor(max_leaf_nodes=self.max_leaf_nodes,
                                           criterion= self.criterion,
                                           splitter=self.mode)
        self.model.fit(training_data[0], training_data[1])
        # self.print_tree()
        leaves_number = (self.model.tree_.node_count+1)/2
        print("Leaves number is {0}".format(leaves_number))
        predict_dictionary = {}
        predictions = self.model.predict(training_data[0])
        for predict_index in range(len(predictions)):
            predict_value = predictions[predict_index]
            if predict_value in predict_dictionary.keys():
                predict_dictionary[predict_value].append(predict_index)
            else:
                predict_dictionary.update({predict_value:[predict_index]})

        return_value_log = mimic_env.get_return(state=list(predict_dictionary.values()))
        return_value_log_struct = mimic_env.get_return(state=list(predict_dictionary.values()), apply_structure_cost=True)
        return_value_var_reduction = mimic_env.get_return(state=list(predict_dictionary.values()), apply_variance_reduction=True)
        mae, rmse = compute_regression_results(predictions=predictions, labels=training_data[1])
        # print("Training return:{0} with mae:{1} and rmse:{2}".format(return_value, mae, rmse), file=log_file)

        with open(save_model_dir, 'wb') as f:
            pickle.dump(obj=self.model, file=f)

        return return_value_log, return_value_log_struct, \
               return_value_var_reduction, mae, rmse, leaves_number
    def fit(self, X, y, sample_weight=None):
        X, y = check_arrays(X, y, dtype=DTYPE, sparse_format="dense", check_ccontiguous=True)
        sample_weight = check_sample_weight(y, sample_weight=sample_weight)
        sample_weight = normalize_weight(y, sample_weight, sig_weight=self.sig_weight)
        self.random_state = check_random_state(self.random_state)
        self.estimators = []
        score = numpy.zeros(len(X), dtype=float)
        y_signed = 2 * y - 1

        self.w_sig = []
        self.w_bck = []

        for _ in range(self.n_estimators):
            residual = y_signed
            # numpy.exp(- y_signed * score)
            # residual[y > 0.5] /= numpy.mean(residual[y > 0.5])
            # residual[y < 0.5] /= -numpy.mean(residual[y < 0.5])

            trainX, testX, trainY, testY, trainW, testW, trainR, testR, trainS, testS = \
                train_test_split(X, y, sample_weight, residual, score,
                                 train_size=self.train_part, test_size=self.test_size, random_state=self.random_state)

            tree = DecisionTreeRegressor(criterion=self.criterion, splitter=self.splitter,
                                         max_depth=self.max_depth, min_samples_leaf=self.min_samples_leaf,
                                         max_features=self.max_features, random_state=self.random_state)

            # fitting
            tree.fit(trainX, trainR, sample_weight=trainW, check_input=False)

            # post-pruning
            self.update_terminal_regions(tree.tree_, testX, testY, testW, testS)

            # updating score
            # score += self.learning_rate * tree.predict(X)
            self.estimators.append(tree)
class DecisionTreeRegressorImpl():

    def __init__(self, criterion='mse', splitter='best', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, presort=False):
        self._hyperparams = {
            'criterion': criterion,
            'splitter': splitter,
            'max_depth': max_depth,
            'min_samples_split': min_samples_split,
            'min_samples_leaf': min_samples_leaf,
            'min_weight_fraction_leaf': min_weight_fraction_leaf,
            'max_features': max_features,
            'random_state': random_state,
            'max_leaf_nodes': max_leaf_nodes,
            'min_impurity_decrease': min_impurity_decrease,
            'min_impurity_split': min_impurity_split,
            'presort': presort}
        self._wrapped_model = Op(**self._hyperparams)

    def fit(self, X, y=None):
        if (y is not None):
            self._wrapped_model.fit(X, y)
        else:
            self._wrapped_model.fit(X)
        return self

    def predict(self, X):
        return self._wrapped_model.predict(X)
Exemple #4
0
    def fit(self, X, y, sample_weight=None):
        sample_weight = check_sample_weight(y, sample_weight=sample_weight)
        assert len(X) == len(y), 'Different lengths of X and y'
        X = pandas.DataFrame(X)
        y = numpy.array(column_or_1d(y), dtype=int)
        assert numpy.all(numpy.in1d(y, [0, 1])), 'Only two-class classification supported'
        self.check_params()

        self.estimators = []
        self.scores = []

        n_samples = len(X)
        n_inbag = int(self.subsample * len(X))
        self.loss = copy.copy(self.loss)
        self.loss.fit(X, y, sample_weight=sample_weight)

        # preparing for fitting in trees
        X = self.get_train_vars(X)
        self.n_features = X.shape[1]
        X, y = check_arrays(X, y)
        X = X.astype(DTYPE)
        y_pred = numpy.zeros(len(X), dtype=float)

        if self.init_estimator is not None:
            y_signed = 2 * y - 1
            self.init_estimator.fit(X, y_signed, sample_weight=sample_weight)
            y_pred += numpy.ravel(self.init_estimator.predict(X))

        for stage in range(self.n_estimators):
            # tree creation
            tree = DecisionTreeRegressor(
                criterion=self.criterion,
                splitter=self.splitter,
                max_depth=self.max_depth,
                min_samples_split=self.min_samples_split,
                min_samples_leaf=self.min_samples_leaf,
                max_features=self.max_features,
                random_state=self.random_state,
                max_leaf_nodes=self.max_leaf_nodes)

            # tree learning
            residual = self.loss.negative_gradient(y_pred)
            train_indices = self.random_state.choice(n_samples, size=n_inbag, replace=False)

            tree.fit(X[train_indices], residual[train_indices],
                     sample_weight=sample_weight[train_indices], check_input=False)
            # update tree leaves
            if self.update_tree:
                self.loss.update_tree(tree.tree_, X=X, y=y, y_pred=y_pred, sample_weight=sample_weight,
                                      update_mask=numpy.ones(len(X), dtype=bool), residual=residual)

            y_pred += self.learning_rate * tree.predict(X)
            self.estimators.append(tree)
            self.scores.append(self.loss(y_pred))
        return self
Exemple #5
0
    def train(self):
        self.action_classifier = DecisionTreeClassifier()
        self.action_classifier.fit(self.action_data, self.action_labels)

        self.drag_start_classifier = DecisionTreeRegressor()
        self.drag_start_classifier.fit(self.drag_data, self.drag_start_labels)

        self.drag_end_classifier = DecisionTreeRegressor()
        self.drag_end_classifier.fit(self.drag_data, self.drag_end_labels)

        self.touch_classifier = DecisionTreeRegressor()
        self.touch_classifier.fit(self.touch_data, self.touch_labels)
Exemple #6
0
 def fit(self, X, y=None):
     self._sklearn_model = SKLModel(**self._hyperparams)
     if (y is not None):
         self._sklearn_model.fit(X, y)
     else:
         self._sklearn_model.fit(X)
     return self
Exemple #7
0
def getModels():
    models = {}
    models['dt'] = DecisionTreeRegressor(max_depth=50)
    models['rf1'] = RandomForestRegressor()
    models['rf2'] = RandomForestRegressor(n_estimators=128, max_depth=15)
    models['gbr'] = GradientBoostingRegressor(n_estimators=128,
                                              max_depth=5,
                                              learning_rate=1.0)
    # models['abr'] = AdaBoostRegressor(n_estimators=128)
    return models
    def fit_stage(self, i, X, y):
        """Fit another stage of ``n_classes_`` trees to the boosting model. """

        # induce regression tree on residuals
        tree = DecisionTreeRegressor(criterion='friedman_mse',
                                     splitter='best',
                                     max_depth=self.max_depth,
                                     min_samples_split=self.min_samples_split,
                                     min_samples_leaf=self.min_samples_leaf,
                                     min_weight_fraction_leaf=0.,
                                     max_features=None,
                                     max_leaf_nodes=None,
                                     random_state=self.random_state,
                                     presort=False)

        tree.fit(X, y, check_input=False, X_idx_sorted=None)

        # add tree to ensemble
        self.estimators[i, 0] = tree
        self.n_estimated = i + 1
Exemple #9
0
def evalOne(parameters):
    all_obs = []
    all_pred = []
    for location in locations:
        trainX, testX, trainY, testY = splitDataForXValidation(location, "location", data, all_features, "target")
        if "depth" in parameters:
            model = DecisionTreeRegressor(max_depth = parameters["depth"], random_state=42)
        elif "leaf" in parameters:
            model = DecisionTreeRegressor(min_samples_leaf = parameters["leaf"], random_state=42)
        elif "max_leaf" in parameters:
            model = DecisionTreeRegressor(max_leaf_nodes = parameters["max_leaf"], random_state=42)
            
        model.fit(trainX, trainY)
        prediction = model.predict(testX)
        all_obs.extend(testY)
        all_pred.extend(prediction)
    return rmseEval(all_obs, all_pred)[1]
Exemple #10
0
def sklearn_titanic_regression():
    from sklearn.tree.tree import DecisionTreeRegressor
    from sklearn.preprocessing.label import LabelEncoder
    import numpy as np
    total_df = pd.read_csv("titanic_clean.csv")
    total_df.drop(['cabin', 'boat', 'body', 'index'], axis=1, inplace=True)
    total_df.dropna(inplace=True)
    for col in total_df.columns.tolist():
        if str(total_df[col].dtype) == 'object':
            total_df[col] = LabelEncoder().fit_transform(total_df[col])

    total_num = total_df.shape[0]
    train_df = total_df.iloc[:int(total_num * 0.8)]
    test_df = total_df.iloc[int(total_num * 0.8):]

    clf = DecisionTreeRegressor()
    clf.fit(train_df.drop(['fare'], axis=1), train_df['fare'])
    pred = clf.predict(test_df.drop(['fare'], axis=1))
    truth = test_df['fare']
    mse = np.sum(np.square(pred - truth)) / test_df.shape[0]
    print(mse)
Exemple #11
0
 def addBoostIteration(self):
     rv = self.regressionValues()
     trees = []
     mask = numpy.array([True] * self.nF)
     for i in range(0, self.nF):
         mask[:] = True
         mask[i] = False
         tree = DecisionTreeRegressor(max_depth=self.max_depth)
         tree.fit(self.data[:, mask], rv[:, i])
         # newpsis[:, i] = tree.predict(self.data[:, mask])
         trees.append(tree)
     self.trees.append(trees)
 def __init__(self, criterion='mse', splitter='best', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, presort=False):
     self._hyperparams = {
         'criterion': criterion,
         'splitter': splitter,
         'max_depth': max_depth,
         'min_samples_split': min_samples_split,
         'min_samples_leaf': min_samples_leaf,
         'min_weight_fraction_leaf': min_weight_fraction_leaf,
         'max_features': max_features,
         'random_state': random_state,
         'max_leaf_nodes': max_leaf_nodes,
         'min_impurity_decrease': min_impurity_decrease,
         'min_impurity_split': min_impurity_split,
         'presort': presort}
     self._wrapped_model = Op(**self._hyperparams)
Exemple #13
0
    def set_params_dict(self, learner_params):

        if self.method == 'classification':
            self.learner = ensemble.AdaBoostClassifier(
                base_estimator=DecisionTreeClassifier(
                    max_depth=learner_params['base_estimator__max_depth'],
                    max_features=learner_params['base_estimator__max_features']
                ),
                n_estimators=int(learner_params['n_estimators']),
                learning_rate=learner_params['learning_rate'])

        elif self.method == 'regression':
            self.learner = ensemble.AdaBoostRegressor(
                base_estimator=DecisionTreeRegressor(
                    max_depth=learner_params['base_estimator__max_depth'],
                    max_features=learner_params['base_estimator__max_features']
                ),
                n_estimators=int(learner_params['n_estimators']),
                learning_rate=learner_params['learning_rate'])
Exemple #14
0
    def set_params_list(self, learner_params, i):

        m_rf_size = int(learner_params[0])
        m_learn_rate = learner_params[1]
        m_dep = int(learner_params[2])
        m_feat = learner_params[3]

        if self.method == 'classification':
            self.learner = ensemble.AdaBoostClassifier(
                base_estimator=DecisionTreeClassifier(max_depth=m_dep,
                                                      max_features=m_feat),
                n_estimators=int(m_rf_size),
                learning_rate=m_learn_rate)

        elif self.method == 'regression':
            self.learner = ensemble.AdaBoostRegressor(
                base_estimator=DecisionTreeRegressor(max_depth=m_dep,
                                                     max_features=m_feat),
                n_estimators=int(m_rf_size),
                learning_rate=m_learn_rate)
Exemple #15
0
def _hi_level_investigation(data):
    '''Perform high-level investigation.'''
    transformers = [
        transformer.OneHotTransformer(nucl=False),
        transformer.AminoAcidTransformer()
    ]

    estimators = [
        LinearRegression(),
        DecisionTreeRegressor(),
        RandomForestRegressor(),
        ExtraTreesRegressor(),
        GradientBoostingRegressor(),
        SVR(kernel='poly')
    ]

    cv = 10

    for trnsfrmr, estimator in itertools.product(transformers, estimators):
        encoded = trnsfrmr.transform(data)
        X, y = encoded[:, 2:], encoded[:, 1]
        X = StandardScaler().fit_transform(X)

        scores = cross_val_score(estimator,
                                 X,
                                 y,
                                 scoring='neg_mean_squared_error',
                                 cv=cv,
                                 verbose=False)
        scores = np.sqrt(-scores)

        print('\t'.join([
            trnsfrmr.__class__.__name__, estimator.__class__.__name__,
            str((scores.mean(), scores.std()))
        ]))

    print()
 def __regressor__(self, X_train, Y_train):
     self.ensemble = DecisionTreeRegressor(random_state=56)
     self.ensemble.fit(X_train, Y_train)
     print('Ensemble Model Ready')
    def fit(self, X, y, sample_weight=None):
        shuffler = Shuffler(X, random_state=self.random_state)
        X, y = check_arrays(X, y, dtype=DTYPE, sparse_format="dense", check_ccontiguous=True)
        y = column_or_1d(y, warn=True)
        n_samples = len(X)
        n_inbag = int(self.subsample * n_samples)
        sample_weight = check_sample_weight(y, sample_weight=sample_weight).copy()
        self.random_state = check_random_state(self.random_state)

        # skipping all checks
        assert self.update_on in ['all', 'same', 'other', 'random']
        y_pred = numpy.zeros(len(y), dtype=float)

        self.classifiers = []
        self.learning_rates = []
        self.loss_values = []
        self.loss = copy.copy(self.loss)
        self.loss.fit(X, y, sample_weight=sample_weight)
        iter_X = shuffler.generate(0.)

        prev_smearing = 1
        for iteration in range(self.n_estimators):
            if iteration % self.recount_step == 0:
                if prev_smearing > 0:
                    iter_smearing = interpolate(self.smearing, iteration, self.n_estimators)
                    prev_smearing = iter_smearing
                    iter_X = shuffler.generate(iter_smearing)
                    iter_X, = check_arrays(iter_X, dtype=DTYPE, sparse_format="dense", check_ccontiguous=True)
                    y_pred = numpy.zeros(len(y))
                    y_pred += sum(cl.predict(X) * rate for rate, cl in zip(self.learning_rates, self.classifiers))


            self.loss_values.append(self.loss(y, y_pred, sample_weight=sample_weight))
            tree = DecisionTreeRegressor(
                criterion=self.criterion,
                splitter=self.splitter,
                max_depth=interpolate(self.max_depth, iteration, self.n_estimators),
                min_samples_split=self.min_samples_split,
                min_samples_leaf=interpolate(self.min_samples_leaf, iteration, self.n_estimators, use_log=True),
                max_features=self.max_features,
                random_state=self.random_state)

            sample_mask = _random_sample_mask(n_samples, n_inbag, self.random_state)
            loss_weight = sample_weight if self.weights_in_loss else numpy.ones(len(sample_weight))
            tree_weight = sample_weight if not self.weights_in_loss else numpy.ones(len(sample_weight))
            residual = self.loss.negative_gradient(y, y_pred, sample_weight=loss_weight)

            tree.fit(numpy.array(iter_X)[sample_mask, :],
                     residual[sample_mask],
                     sample_weight=tree_weight[sample_mask], check_input=False)
            # update tree leaves
            if self.update_tree:
                if self.update_on == 'all':
                    update_mask = numpy.ones(len(sample_mask), dtype=bool)
                elif self.update_on == 'same':
                    update_mask = sample_mask
                elif self.update_on == 'other':
                    update_mask = ~sample_mask
                else:  # random
                    update_mask = _random_sample_mask(n_samples, n_inbag, self.random_state)
                self.loss.update_terminal_regions(tree.tree_, X=iter_X, y=y, residual=residual, pred=y_pred,
                                                  sample_mask=update_mask, sample_weight=sample_weight)
            iter_learning_rate = interpolate(self.learning_rate, iteration, self.n_estimators, use_log=True)
            y_pred += iter_learning_rate * tree.predict(X)
            self.classifiers.append(tree)
            self.learning_rates.append(iter_learning_rate)

        return self
Exemple #18
0
		("mapper", mapper),
		("selector", SelectUnique()),
		("regressor", regressor)
	])
	pipeline.fit(auto_X, auto_y)
	pipeline.configure(**pmml_options)
	if isinstance(regressor, XGBRegressor):
		pipeline.verify(auto_X.sample(frac = 0.05, random_state = 13), precision = 1e-5, zeroThreshold = 1e-5)
	else:
		pipeline.verify(auto_X.sample(frac = 0.05, random_state = 13))
	store_pkl(pipeline, name)
	mpg = DataFrame(pipeline.predict(auto_X), columns = ["mpg"])
	store_csv(mpg, name)

if "Auto" in datasets:
	build_auto(AdaBoostRegressor(DecisionTreeRegressor(random_state = 13, min_samples_leaf = 5), random_state = 13, n_estimators = 17), "AdaBoostAuto")
	build_auto(ARDRegression(normalize = True), "BayesianARDAuto")
	build_auto(BayesianRidge(normalize = True), "BayesianRidgeAuto")
	build_auto(DecisionTreeRegressor(random_state = 13, min_samples_leaf = 2), "DecisionTreeAuto", compact = False)
	build_auto(BaggingRegressor(DecisionTreeRegressor(random_state = 13, min_samples_leaf = 5), random_state = 13, n_estimators = 3, max_features = 0.5), "DecisionTreeEnsembleAuto")
	build_auto(DummyRegressor(strategy = "median"), "DummyAuto")
	build_auto(ElasticNetCV(random_state = 13), "ElasticNetAuto")
	build_auto(ExtraTreesRegressor(random_state = 13, min_samples_leaf = 5), "ExtraTreesAuto")
	build_auto(GradientBoostingRegressor(random_state = 13, init = None), "GradientBoostingAuto")
	build_auto(HuberRegressor(), "HuberAuto")
	build_auto(LarsCV(), "LarsAuto")
	build_auto(LassoCV(random_state = 13), "LassoAuto")
	build_auto(LassoLarsCV(), "LassoLarsAuto")
	build_auto(OptimalLGBMRegressor(objective = "regression", n_estimators = 17, num_iteration = 11), "LGBMAuto", num_iteration = 11)
	build_auto(LinearRegression(), "LinearRegressionAuto")
	build_auto(BaggingRegressor(LinearRegression(), random_state = 13, max_features = 0.75), "LinearRegressionEnsembleAuto")
class FinalEnsembleModel(HCDRDataScorer):

    INTERRIM_MODELS = { 'app':'app_model.pkl', 'bureau':'bureau_model.pkl', 'ccb':'ccb_model.pkl', \
                        'pcb':'pcb_model.pkl', 'pa':'prev_app_model.pkl', 'ip':'ins_pmt_model.pkl'}

    #     INTERRIM_MODELS = { 'bureau':'bureau_model.pkl' }

    score_type = 'train'

    def __init__(self, path_to_data_store):
        self.path_to_data_store = path_to_data_store
        app_data = pd.read_csv(path_to_data_store + '/application_train.csv')
        print('Training Set Size', app_data.shape[0])
        y_train = app_data['TARGET']
        x_train = pd.DataFrame(self.createEnsembleData(app_data[['SK_ID_CURR'
                                                                 ]]),
                               dtype='float64')
        print('Training Set Size After Merging', x_train.shape[0])
        x_train.to_csv('ensemble_data.csv')
        #         self.__regressor__(x_train, y_train)
        self.__sv_regressor__(x_train, y_train)

    def __regressor__(self, X_train, Y_train):
        self.ensemble = DecisionTreeRegressor(random_state=56)
        self.ensemble.fit(X_train, Y_train)
        print('Ensemble Model Ready')

    def __sv_regressor__(self, data, target):
        from sklearn.svm.classes import SVR
        svr_rbf = SVR(kernel='rbf', C=1e3, gamma=0.1)
        svr_rbf.fit(data, target)
        self.ensemble = svr_rbf

    def __random_forest_regressor__(self, data, target):
        from sklearn.model_selection import RandomizedSearchCV
        from scipy.stats import randint

        param_distribs = {
            'n_estimators': randint(low=1, high=200),
            'max_features': randint(low=5, high=8),
        }

        forest_reg = RandomForestRegressor(random_state=42)
        rnd_search = RandomizedSearchCV(forest_reg,
                                        param_distributions=param_distribs,
                                        n_jobs=4,
                                        n_iter=20,
                                        cv=10,
                                        scoring='neg_mean_squared_error',
                                        random_state=42)
        #         sampling_data = data.drop(['SK_ID_CURR'], axis=1)
        rnd_search.fit(data, target)
        #         cvres = rnd_search.cv_results_
        #         for mean_score, params in zip(cvres["mean_test_score"], cvres["params"]):
        #             print(np.sqrt(-mean_score), params)
        self.ensemble = rnd_search.best_estimator_
        print('Ensemble Model Ready')

    def __curate__(self, data):
        data = data.mask(np.isinf(data))
        multi_col_na_replace_with_zero = MultiColumnFillNAWithNumericValue(
            data.columns, 0)
        data = multi_col_na_replace_with_zero.transform(data)
        return data

    def setScoreType(self, score_type):
        self.score_type = score_type

    def mean_absolute_percentage_error(self, y_true, y_pred):
        y_true, y_pred = np.array(y_true), np.array(y_pred)
        return np.mean(np.abs((y_true - y_pred) / y_true)) * 100

    def score(self):
        test_target = None
        test_data = pd.read_csv(self.path_to_data_store +
                                '/application_test.csv')
        sk_id_curr = test_data[['SK_ID_CURR']]
        if self.score_type == 'actual':
            test_data = self.createEnsembleData(test_data[['SK_ID_CURR']])
        else:
            test_target = test_data['TARGET']
            test_data = self.createEnsembleData(test_data[['SK_ID_CURR']])

        score = self.ensemble.predict(test_data)
        if test_target is not None:
            print(mean_squared_error(test_target.values, score))
            output = self.format_output(sk_id_curr, score, test_target)
            output.to_csv('submission.csv', index=False)
        else:
            output = self.format_output(sk_id_curr, score)
            output.to_csv('submission.csv', index=False)

    def format_output(self, sk_id_curr, preds, target=None):
        from sklearn.preprocessing import MinMaxScaler
        scaler = MinMaxScaler(feature_range=(0, 1))

        def ignoreNeg(x):
            if x < 0:
                return 0
            else:
                return x

        if target is not None:
            data = pd.DataFrame()
            data['SK_ID_CURR'] = sk_id_curr
            data['PREDS'] = scaler.fit_transform([preds])
            data['TARGET'] = target
        else:
            data = pd.DataFrame()
            data['SK_ID_CURR'] = sk_id_curr
            data['TARGET'] = preds
            data['TARGET'] = scaler.fit_transform(data[['TARGET']])
        return data

    def createEnsembleData(self, app_data):
        dataset = None
        curr_sk_ids = app_data['SK_ID_CURR'].values
        app_data = None
        for typ, model_name in self.INTERRIM_MODELS.items():
            model = util.load('models/' + model_name)
            if typ == 'app':
                score_map = model.score(curr_sk_ids, self.score_type)
                dataset = pd.DataFrame.from_dict(score_map,
                                                 orient='index').reset_index()
                dataset.columns = ['SK_ID_CURR', 'DOC', 'REALTY', 'APP']
                print('Application data ready .. ')
            elif typ == 'bureau':
                score_map = model.score(curr_sk_ids)
                dataset = pd.DataFrame.from_dict(score_map,
                                                 orient='index').reset_index()
                dataset.columns = ['SK_ID_CURR', 'BUREAU']
                print('Bureau data ready .. ')
            elif typ == 'ccb':
                score_map = model.score(curr_sk_ids)
                dataset = pd.DataFrame.from_dict(score_map,
                                                 orient='index').reset_index()
                dataset.columns = ['SK_ID_CURR', 'CCB']
                print('CCB data ready .. ')
            elif typ == 'pcb':
                score_map = model.score(curr_sk_ids)
                dataset = pd.DataFrame.from_dict(score_map,
                                                 orient='index').reset_index()
                dataset.columns = ['SK_ID_CURR', 'PCB']
                print('PCB data ready .. ')
            elif typ == 'pa':
                score_map = model.score(curr_sk_ids)
                dataset = pd.DataFrame.from_dict(score_map,
                                                 orient='index').reset_index()
                dataset.columns = ['SK_ID_CURR', 'PREV_APP']
                print('PA data ready .. ')
            elif typ == 'ip':
                score_map = model.score(curr_sk_ids)
                dataset = pd.DataFrame.from_dict(score_map,
                                                 orient='index').reset_index()
                dataset.columns = ['SK_ID_CURR', 'INS_PMT']
                print('IP data ready .. ')
            if app_data is None:
                app_data = dataset
            else:
                app_data = pd.merge(app_data,
                                    dataset,
                                    how='right',
                                    on=['SK_ID_CURR'])
        return self.__curate__(app_data.drop(['SK_ID_CURR'], axis=1))
Exemple #20
0
		("mapper", mapper),
		("selector", SelectUnique()),
		("regressor", regressor)
	])
	pipeline.fit(auto_X, auto_y)
	pipeline.configure(**pmml_options)
	if isinstance(regressor, XGBRegressor):
		pipeline.verify(auto_X.sample(frac = 0.05, random_state = 13), precision = 1e-5, zeroThreshold = 1e-5)
	else:
		pipeline.verify(auto_X.sample(frac = 0.05, random_state = 13))
	store_pkl(pipeline, name)
	mpg = DataFrame(pipeline.predict(auto_X), columns = ["mpg"])
	store_csv(mpg, name)

if "Auto" in datasets:
	build_auto(AdaBoostRegressor(DecisionTreeRegressor(random_state = 13, min_samples_leaf = 5), random_state = 13, n_estimators = 17), "AdaBoostAuto")
	build_auto(ARDRegression(normalize = True), "BayesianARDAuto")
	build_auto(BayesianRidge(normalize = True), "BayesianRidgeAuto")
	build_auto(DecisionTreeRegressor(random_state = 13, min_samples_leaf = 2), "DecisionTreeAuto", compact = False)
	build_auto(BaggingRegressor(DecisionTreeRegressor(random_state = 13, min_samples_leaf = 5), random_state = 13, n_estimators = 3, max_features = 0.5), "DecisionTreeEnsembleAuto")
	build_auto(DummyRegressor(strategy = "median"), "DummyAuto")
	build_auto(ElasticNetCV(random_state = 13), "ElasticNetAuto")
	build_auto(ExtraTreesRegressor(random_state = 13, min_samples_leaf = 5), "ExtraTreesAuto")
	build_auto(GradientBoostingRegressor(random_state = 13, init = None), "GradientBoostingAuto")
	build_auto(HuberRegressor(), "HuberAuto")
	build_auto(LarsCV(), "LarsAuto")
	build_auto(LassoCV(random_state = 13), "LassoAuto")
	build_auto(LassoLarsCV(), "LassoLarsAuto")
	build_auto(OptimalLGBMRegressor(objective = "regression", n_estimators = 17, num_iteration = 11), "LGBMAuto", num_iteration = 11)
	build_auto(LinearRegression(), "LinearRegressionAuto")
	build_auto(BaggingRegressor(LinearRegression(), random_state = 13, max_features = 0.75), "LinearRegressionEnsembleAuto")
Exemple #21
0
    pipeline = make_pmml_pipeline(pipeline, auto_X.columns.values, auto_y.name)
    pipeline.configure(**pmml_options)
    if isinstance(regressor, XGBRegressor):
        pipeline.verify(auto_X.sample(frac=0.05, random_state=13),
                        precision=1e-5,
                        zeroThreshold=1e-5)
    else:
        pipeline.verify(auto_X.sample(frac=0.05, random_state=13))
    store_pkl(pipeline, name + ".pkl")
    mpg = DataFrame(pipeline.predict(auto_X), columns=["mpg"])
    store_csv(mpg, name + ".csv")


if "Auto" in datasets:
    build_auto(
        AdaBoostRegressor(DecisionTreeRegressor(random_state=13,
                                                min_samples_leaf=5),
                          random_state=13,
                          n_estimators=17), "AdaBoostAuto")
    build_auto(ARDRegression(normalize=True), "BayesianARDAuto")
    build_auto(BayesianRidge(normalize=True), "BayesianRidgeAuto")
    build_auto(DecisionTreeRegressor(random_state=13, min_samples_leaf=2),
               "DecisionTreeAuto",
               compact=False)
    build_auto(
        BaggingRegressor(DecisionTreeRegressor(random_state=13,
                                               min_samples_leaf=5),
                         random_state=13,
                         n_estimators=3,
                         max_features=0.5), "DecisionTreeEnsembleAuto")
    build_auto(DummyRegressor(strategy="median"), "DummyAuto")
    build_auto(ElasticNetCV(random_state=13), "ElasticNetAuto")
    def fit(self, X, y, sample_weight=None):
        shuffler = Shuffler(X, random_state=self.random_state)
        X, y = check_arrays(X,
                            y,
                            dtype=DTYPE,
                            sparse_format="dense",
                            check_ccontiguous=True)
        y = column_or_1d(y, warn=True)
        n_samples = len(X)
        n_inbag = int(self.subsample * n_samples)
        sample_weight = check_sample_weight(
            y, sample_weight=sample_weight).copy()
        self.random_state = check_random_state(self.random_state)

        # skipping all checks
        assert self.update_on in ['all', 'same', 'other', 'random']
        y_pred = numpy.zeros(len(y), dtype=float)

        self.classifiers = []
        self.learning_rates = []
        self.loss_values = []
        self.loss = copy.copy(self.loss)
        self.loss.fit(X, y, sample_weight=sample_weight)
        iter_X = shuffler.generate(0.)

        prev_smearing = 1
        for iteration in range(self.n_estimators):
            if iteration % self.recount_step == 0:
                if prev_smearing > 0:
                    iter_smearing = interpolate(self.smearing, iteration,
                                                self.n_estimators)
                    prev_smearing = iter_smearing
                    iter_X = shuffler.generate(iter_smearing)
                    iter_X, = check_arrays(iter_X,
                                           dtype=DTYPE,
                                           sparse_format="dense",
                                           check_ccontiguous=True)
                    y_pred = numpy.zeros(len(y))
                    y_pred += sum(
                        cl.predict(X) * rate for rate, cl in zip(
                            self.learning_rates, self.classifiers))

            self.loss_values.append(
                self.loss(y, y_pred, sample_weight=sample_weight))
            tree = DecisionTreeRegressor(
                criterion=self.criterion,
                splitter=self.splitter,
                max_depth=interpolate(self.max_depth, iteration,
                                      self.n_estimators),
                min_samples_split=self.min_samples_split,
                min_samples_leaf=interpolate(self.min_samples_leaf,
                                             iteration,
                                             self.n_estimators,
                                             use_log=True),
                max_features=self.max_features,
                random_state=self.random_state)

            sample_mask = _random_sample_mask(n_samples, n_inbag,
                                              self.random_state)
            loss_weight = sample_weight if self.weights_in_loss else numpy.ones(
                len(sample_weight))
            tree_weight = sample_weight if not self.weights_in_loss else numpy.ones(
                len(sample_weight))
            residual = self.loss.negative_gradient(y,
                                                   y_pred,
                                                   sample_weight=loss_weight)

            tree.fit(numpy.array(iter_X)[sample_mask, :],
                     residual[sample_mask],
                     sample_weight=tree_weight[sample_mask],
                     check_input=False)
            # update tree leaves
            if self.update_tree:
                if self.update_on == 'all':
                    update_mask = numpy.ones(len(sample_mask), dtype=bool)
                elif self.update_on == 'same':
                    update_mask = sample_mask
                elif self.update_on == 'other':
                    update_mask = ~sample_mask
                else:  # random
                    update_mask = _random_sample_mask(n_samples, n_inbag,
                                                      self.random_state)
                self.loss.update_terminal_regions(tree.tree_,
                                                  X=iter_X,
                                                  y=y,
                                                  residual=residual,
                                                  pred=y_pred,
                                                  sample_mask=update_mask,
                                                  sample_weight=sample_weight)
            iter_learning_rate = interpolate(self.learning_rate,
                                             iteration,
                                             self.n_estimators,
                                             use_log=True)
            y_pred += iter_learning_rate * tree.predict(X)
            self.classifiers.append(tree)
            self.learning_rates.append(iter_learning_rate)

        return self
Exemple #23
0
data['Sex'] = label_encoder.transform(data['Sex'])

enc = LabelEncoder()
label_encoder = enc.fit(data[pd.notnull(data['Floor'])]['Floor'].values)
transformed = label_encoder.transform(data[pd.notnull(
    data['Floor'])]['Floor'].values)
indexes = pd.notnull(data.Floor)
data.loc[indexes, 'Floor'] = transformed

enc = LabelEncoder()
label_encoder = enc.fit(data['Embarked'])
data['Embarked'] = label_encoder.transform(data['Embarked'])

## predykcja wieku
# TODO: zobaczyć predykcję również tylko po Title
regresor = DecisionTreeRegressor()
X_train_age = data[pd.notnull(data.Age)][['Title', 'SibSp', 'Parch']]
y_train_age = data[pd.notnull(data.Age)][['Age']]
regresor.fit(X_train_age, y_train_age)

# TODO: sprawdzić tą predykcję wieku, działa chyba ok
# data['AgePredicted'] = np.where(pd.isnull(data.Age), regresor.predict(data[['Title', 'SibSp', 'Parch']]), None)
data['Age'] = np.where(pd.isnull(data.Age),
                       regresor.predict(data[['Title', 'SibSp', 'Parch']]),
                       data['Age'])

##predykcja poziomu
classifier = DecisionTreeClassifier(max_depth=3, min_samples_leaf=2)
#

X_train_floor = data[pd.notnull(data.Floor)][['Embarked', 'Pclass']]
Exemple #24
0
@author: TF
'''
import matplotlib.pyplot as plt
import numpy as np
from numpy import *
from sklearn.tree.tree import DecisionTreeRegressor


def plotfigure(X, X_test, y, yp):
    plt.figure()
    plt.scatter(X, y, c='k', label='data')
    plt.plot(X_test, yp, c='r', label='max_depth = 5', linewidth=2)
    plt.xlabel('data')
    plt.ylabel('target')
    plt.title('Decision Tree Regression')
    plt.legend()
    plt.show()


x = np.linspace(-5, 5, 200)
siny = np.sin(x)
X = mat(x).T
y = siny + np.random.rand(1, len(siny)) * 1.5
y = y.tolist()[0]
clf = DecisionTreeRegressor(max_depth=3)
clf.fit(X, y)

X_test = np.arange(-5.0, 5.0, 0.05)[:, np.newaxis]
yp = clf.predict(X_test)

plotfigure(X, X_test, y, yp)
    ])

from sklearn.pipeline import FeatureUnion

full_pipeline = FeatureUnion(transformer_list=[
        ("num_pipeline", num_pipeline),
        ("cat_pipeline", cat_pipeline),
    ])

housing_prepared = full_pipeline.fit_transform(housing)
housing_test_prepared = full_pipeline.fit_transform(housing_test)

model_maps = dict()
model_maps["Linear_Regression"] = LinearRegression()
model_maps["Logistic_Regression"] = LogisticRegression(random_state=42, n_jobs=-1)
model_maps["DecisionTreeRegressor"] = DecisionTreeRegressor(random_state=42)
model_maps["RandomForestRegressor"] = RandomForestRegressor(random_state=42, n_jobs=-1)
model_maps["SupportVectorRegressor"] = SVR(kernel="linear")

results = pd.DataFrame(columns=["Hardware", "ExpID", "RMSETrainCF", "RMSETest", "MAPETrainCF", "MAPETest", "p-value", "TrainTime(s)", "TestTime(s)", "Experiment description"])

mape_scorer = make_scorer(mean_absolute_percentage_error, greater_is_better=False)


def trainStep(algo, indx, name):
    print("starting " + str(name) + " training")
    results.loc[indx] = ["Corei3/8GB", indx + 1, 0, 0, 0, 0, 0, 0, 0, "Training " + str(name)]
    start_time = time.time()
    algo.fit(housing_prepared, housing_labels)
    results.loc[indx, "TrainTime(s)"] = time.time() - start_time
    print("ends " + str(name) + " training")
Exemple #26
0
			'AffinityPropagation':AffinityPropagation(),
			'AgglomerativeClustering':AgglomerativeClustering(),
			'BaggingClassifier':BaggingClassifier(),
			'BaggingRegressor':BaggingRegressor(),
			'BayesianGaussianMixture':BayesianGaussianMixture(),
			'BayesianRidge':BayesianRidge(),
			'BernoulliNB':BernoulliNB(),
			'BernoulliRBM':BernoulliRBM(),
			'Binarizer':Binarizer(),
			'Birch':Birch(),
			'CCA':CCA(),
			'CalibratedClassifierCV':CalibratedClassifierCV(),
			'DBSCAN':DBSCAN(),
			'DPGMM':DPGMM(),
			'DecisionTreeClassifier':DecisionTreeClassifier(),
			'DecisionTreeRegressor':DecisionTreeRegressor(),
			'DictionaryLearning':DictionaryLearning(),
			'ElasticNet':ElasticNet(),
			'ElasticNetCV':ElasticNetCV(),
			'EmpiricalCovariance':EmpiricalCovariance(),
			'ExtraTreeClassifier':ExtraTreeClassifier(),
			'ExtraTreeRegressor':ExtraTreeRegressor(),
			'ExtraTreesClassifier':ExtraTreesClassifier(),
			'ExtraTreesRegressor':ExtraTreesRegressor(),
			'FactorAnalysis':FactorAnalysis(),
			'FastICA':FastICA(),
			'FeatureAgglomeration':FeatureAgglomeration(),
			'FunctionTransformer':FunctionTransformer(),
			'GMM':GMM(),
			'GaussianMixture':GaussianMixture(),
			'GaussianNB':GaussianNB(),
X, y = shuffle(boston.data, boston.target)

x = [11.95, 0.00, 18.100, 0, 0.6590, 5.6090, 90.00, 1.385, 24, 680.0, 20.20, 332.09, 12.13]

predictions = []
predictions2 = []
predictions3 = []
predictions4 = []
offset = int(0.7 * len(X))

for i in range(10):
    X, y = shuffle(boston.data, boston.target)
    X_train, y_train = X[:offset], y[:offset]
    X_test, y_test = X[offset:], y[offset:]
    regressor = GradientBoostingRegressor(max_depth=20, n_estimators=140)
    regressor2 = DecisionTreeRegressor(max_depth=6)
    regressor3 = LinearRegression()
    regressor4 = RandomForestRegressor()
    regressor.fit(X_train, y_train)
    regressor2.fit(X_train, y_train)
    regressor3.fit(X_train, y_train)
    regressor4.fit(X_train, y_train)
    y_pred = regressor.predict(x)
    y_pred2 = regressor2.predict(x)
    y_pred3 = regressor3.predict(x)
    y_pred4 = regressor4.predict(x)
    predictions.append(y_pred)
    predictions2.append(y_pred2)
    predictions3.append(y_pred3)
    predictions4.append(y_pred4)
    print "\nPrediction = " + str(y_pred)
Exemple #28
0
    # HistGradientBoostingClassifier(random_state=randomstate),    # learning_rate is a hyper-parameter in the range (0.0, 1.0]
    AdaBoostRegressor(n_estimators=200, random_state=randomstate),
    GaussianProcessRegressor(normalize_y=True),
    ARDRegression(),
    # HuberRegressor(),   # epsilon:  greater than 1.0, default 1.35
    LinearRegression(n_jobs=5),
    PassiveAggressiveRegressor(
        random_state=randomstate),  # C: 0.25, 0.5, 1, 5, 10
    SGDRegressor(random_state=randomstate),
    TheilSenRegressor(n_jobs=5, random_state=randomstate),
    RANSACRegressor(random_state=randomstate),
    KNeighborsRegressor(
        weights='distance'),  # n_neighbors: 3, 6, 9, 12, 15, 20
    RadiusNeighborsRegressor(weights='distance'),  # radius: 1, 2, 5, 10, 15
    MLPRegressor(max_iter=10000000, random_state=randomstate),
    DecisionTreeRegressor(
        random_state=randomstate),  # max_depth = 2, 3, 4, 6, 8
    ExtraTreeRegressor(random_state=randomstate),  # max_depth = 2, 3, 4, 6, 8
    SVR()  # C: 0.25, 0.5, 1, 5, 10
]

selectors = [
    reliefF.reliefF,
    fisher_score.fisher_score,
    # chi_square.chi_square,
    JMI.jmi,
    CIFE.cife,
    DISR.disr,
    MIM.mim,
    CMIM.cmim,
    ICAP.icap,
    MRMR.mrmr,
Exemple #29
0
    11.95, 0.00, 18.100, 0, 0.6590, 5.6090, 90.00, 1.385, 24, 680.0, 20.20,
    332.09, 12.13
]

predictions = []
predictions2 = []
predictions3 = []
predictions4 = []
offset = int(0.7 * len(X))

for i in range(10):
    X, y = shuffle(boston.data, boston.target)
    X_train, y_train = X[:offset], y[:offset]
    X_test, y_test = X[offset:], y[offset:]
    regressor = GradientBoostingRegressor(max_depth=20, n_estimators=140)
    regressor2 = DecisionTreeRegressor(max_depth=6)
    regressor3 = LinearRegression()
    regressor4 = RandomForestRegressor()
    regressor.fit(X_train, y_train)
    regressor2.fit(X_train, y_train)
    regressor3.fit(X_train, y_train)
    regressor4.fit(X_train, y_train)
    y_pred = regressor.predict(x)
    y_pred2 = regressor2.predict(x)
    y_pred3 = regressor3.predict(x)
    y_pred4 = regressor4.predict(x)
    predictions.append(y_pred)
    predictions2.append(y_pred2)
    predictions3.append(y_pred3)
    predictions4.append(y_pred4)
    print "\nPrediction = " + str(y_pred)
Exemple #30
0
from sympy.core.numbers import RealNumber
from sympy.functions.elementary.piecewise import Piecewise
from sympy.core.symbol import Symbol
import pandas
from nose.tools import assert_almost_equal

# Create some data
m = 10000
X = np.random.normal(size=(m, 10))
thresh = np.random.normal(size=10)
X_transformed = X * (X > thresh)
beta = np.random.normal(size=10)
y = np.dot(X_transformed, beta) + np.random.normal(size=m)

# Train a decision tree regressor
model = DecisionTreeRegressor()
model.fit(X, y)
print model.score(X, y)


# Inspect
def _sym_predict_decision_tree(model,
                               names,
                               current_node=0,
                               output_idx=0,
                               class_idx=0):
    left = model.tree_.children_left[current_node]
    right = model.tree_.children_right[current_node]
    if left == -1:
        assert right == -1
        left_expr = RealNumber(model.tree_.value[current_node, output_idx,
Exemple #31
0
class Model(object):
    """
    The machine learning component of the tester.

    This component stores four different models:
    1) A model to decide between different types of events (drags and touches).
    2) A model to decide on the starting position for drags.
    3) A model to decide on the ending position for drags.
    4) A model to decide on the position of the touch.

    The input data are all the different known UI elements on the screen from
    the training data and whether or not they are visible on the screen.

    To acquire this, we first get the stored XML model and record the resource-id
    and class. We concatenate them into an array and mark as (1) for visible and (0)
    for not visible.
    """

    def __init__(self):
        self.symbols = {}
        self.action_data = None
        self.action_labels = None
        self.action_classifier = None
        self.drag_data = None
        self.drag_end_labels = None
        self.drag_end_classifier = None
        self.drag_start_labels = None
        self.drag_start_classifier = None
        self.touch_data = None
        self.touch_labels = None
        self.touch_classifier = None
        self.device_info = device.info

    def parse_events(self, queue):
        symbols = {"randomizer": 0}
        events = []

        all_data = []
        all_results = []
        drag_data = []
        drag_start_results = []
        drag_end_results = []
        touch_data = []
        touch_results = []

        while not queue.empty():
            event = queue.get()
            events.append(event)

            lst = event.state.start.as_list(symbols)
            lst[0] = random()
            all_data.append(lst)

            if event.action.is_drag():
                drag_data.append(lst)
                all_results.append(DRAG)

                start = event.changes.start()
                end = event.changes.end()
                drag_start_results.append(start.x * start.y)
                drag_end_results.append(end.x * end.y)

            if event.action.is_touch():
                touch_data.append(lst)
                all_results.append(TOUCH)

                start = event.changes.start()
                touch_results.append(start.x * start.y)

            if event.action.is_back():
                all_results.append(BACK)

        data = np.zeros((len(all_data), len(symbols)))
        for i, item in enumerate(all_data):
            data[i, : len(item)] = item[:]

        drags = np.zeros((len(drag_data), len(symbols)))
        for i, item in enumerate(drag_data):
            drags[i, : len(item)] = item[:]

        touches = np.zeros((len(touch_data), len(symbols)))
        for i, item in enumerate(touch_data):
            touches[i, : len(item)] = item[:]

        self.symbols = symbols

        self.action_data = data
        self.action_labels = np.array(all_results)

        self.drag_data = drags
        self.drag_start_labels = np.array(drag_start_results)
        self.drag_end_labels = np.array(drag_end_results)

        self.touch_data = touches
        self.touch_labels = np.array(touch_results)

    def train(self):
        self.action_classifier = DecisionTreeClassifier()
        self.action_classifier.fit(self.action_data, self.action_labels)

        self.drag_start_classifier = DecisionTreeRegressor()
        self.drag_start_classifier.fit(self.drag_data, self.drag_start_labels)

        self.drag_end_classifier = DecisionTreeRegressor()
        self.drag_end_classifier.fit(self.drag_data, self.drag_end_labels)

        self.touch_classifier = DecisionTreeRegressor()
        self.touch_classifier.fit(self.touch_data, self.touch_labels)

    def predict(self, state):
        input = state.as_list(self.symbols, False)
        input[0] = random()
        action = Action()

        type = self.action_classifier.predict(input)
        width = self.device_info["displayWidth"]
        if type == DRAG:
            start = self.drag_start_classifier.predict(input)[0]
            end = self.drag_end_classifier.predict(input)[0]
            start = Point(start % width, start / width)
            end = Point(end % width, end / width)

            action.init(ACTION_DRAG, start, end, 0.5)
        elif type == TOUCH:
            point = self.touch_classifier.predict(input)[0]
            point = Point(point % width, point / width)

            action.init(ACTION_TOUCH, point.x, point.y)
        elif type == BACK:
            action.init(ACTION_BACK)

        return action

    def save(self):
        pass
 'elastic_net': {
     'max_iter': [5, 10, 15],
     'alpha': [0.0001, 0.001, 0.01, 0.1, 1, 10, 100],
     'l1_ratio': np.arange(0.0, 1.0, 0.1)
 },
 'extra_trees': {
     "n_estimators": [80],
     'max_depth': [
         30,
     ],
     'max_features': ['auto', 'sqrt', 'log2'],
     'min_samples_split': [0.01, 0.05, 0.10],
     'min_samples_leaf': [0.005, 0.05, 0.10],
 },
 'bagging': {
     "base_estimator": [DecisionTreeRegressor(max_depth=8)],
     "n_estimators": [200],
     "max_features": [0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0],
 },
 'sgd': {
     "alpha":
     [1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 0.25, 0.50, 0.75, 1.0],
     "penalty": ["l1", "l2"],
     "loss": [
         'squared_loss', 'huber', 'epsilon_insensitive',
         'squared_epsilon_insensitive'
     ]
 },
 'linear_svr': {
     "C": [0.0001, 0.001, 0.01, 0.1, 1.0, 10, 100],
     "loss": ['epsilon_insensitive', 'squared_epsilon_insensitive']
Exemple #33
0
store_pkl(auto_mapper, "Auto.pkl")

auto_X = auto[:, 0:9]
auto_y = auto[:, 9]

print(auto_X.dtype, auto_y.dtype)


def build_auto(regressor, name):
    regressor = regressor.fit(auto_X, auto_y)
    store_pkl(regressor, name + ".pkl")
    mpg = DataFrame(regressor.predict(auto_X), columns=["mpg"])
    store_csv(mpg, name + ".csv")


build_auto(DecisionTreeRegressor(random_state=13, min_samples_leaf=5),
           "DecisionTreeAuto")
build_auto(
    BaggingRegressor(DecisionTreeRegressor(random_state=13,
                                           min_samples_leaf=5),
                     random_state=13,
                     n_estimators=3,
                     max_features=0.5), "DecisionTreeEnsembleAuto")
build_auto(ElasticNetCV(random_state=13), "ElasticNetAuto")
build_auto(ExtraTreesRegressor(random_state=13, min_samples_leaf=5),
           "ExtraTreesAuto")
build_auto(GradientBoostingRegressor(random_state=13, init=None),
           "GradientBoostingAuto")
build_auto(LassoCV(random_state=13), "LassoAuto")
build_auto(LinearRegression(), "LinearRegressionAuto")
build_auto(
Exemple #34
0
])

auto = auto_mapper.fit_transform(auto_df)

store_pkl(auto_mapper, "Auto.pkl")

auto_X = auto[:, 0:7]
auto_y = auto[:, 7]

print(auto_X.dtype, auto_y.dtype)

def predict_auto(regressor):
    mpg = DataFrame(regressor.predict(auto_X), columns = ["mpg"])
    return mpg

auto_tree = DecisionTreeRegressor(random_state = 13, min_samples_leaf = 5)
auto_tree.fit(auto_X, auto_y)

store_pkl(auto_tree, "DecisionTreeAuto.pkl")
store_csv(predict_auto(auto_tree), "DecisionTreeAuto.csv")

auto_forest = RandomForestRegressor(random_state = 13, min_samples_leaf = 5)
auto_forest.fit(auto_X, auto_y)

store_pkl(auto_forest, "RandomForestAuto.pkl")
store_csv(predict_auto(auto_forest), "RandomForestAuto.csv")

auto_regression = LinearRegression()
auto_regression.fit(auto_X, auto_y)

store_pkl(auto_regression, "RegressionAuto.pkl")
    def _fit_stage(self, i, X, y, y_pred, sample_weight, sample_mask,
                   random_state, X_idx_sorted, X_csc=None, X_csr=None):
        """Fit another stage of ``n_classes_`` trees to the boosting model. """

        assert sample_mask.dtype == np.bool
        loss = self.loss_
        original_y = y

        for k in range(loss.K):
            if loss.is_multi_class:
                y = np.array(original_y == k, dtype=np.float64)

            residual = loss.negative_gradient(y, y_pred, k=k,
                                              sample_weight=sample_weight)

            # induce regression tree on residuals
            tree = DecisionTreeRegressor(
                criterion=self.criterion,
                splitter='best',
                max_depth=self.max_depth,
                min_samples_split=self.min_samples_split,
                min_samples_leaf=self.min_samples_leaf,
                min_weight_fraction_leaf=self.min_weight_fraction_leaf,
                min_impurity_decrease=self.min_impurity_decrease,
                min_impurity_split=self.min_impurity_split,
                max_features=self.max_features,
                max_leaf_nodes=self.max_leaf_nodes,
                random_state=random_state,
                presort=self.presort)

            if self.subsample < 1.0:
                # no inplace multiplication!
                sample_weight = sample_weight * sample_mask.astype(np.float64)

            if X_csc is not None:
                tree.fit(X_csc, residual, sample_weight=sample_weight,
                         check_input=False, X_idx_sorted=X_idx_sorted)
            else:
                tree.fit(X, residual, sample_weight=sample_weight,
                         check_input=False, X_idx_sorted=X_idx_sorted)


            # update tree leaves
            
            if i == 0:
                if X_csr is not None:
                    loss.update_terminal_regions(tree.tree_, X_csr, y, residual, y_pred,
                                                 sample_weight, sample_mask, function(i), k=k)
                else:
                    loss.update_terminal_regions(tree.tree_, X, y, residual, y_pred,
                                                 sample_weight, sample_mask,
                                                 function(i), k=k)
                
                # add tree to ensemble
                self.estimators_[i, k] = tree
                
                return y_pred
            else:
                if X_csr is not None:
                    loss.update_terminal_regions(tree.tree_, X_csr, y, residual, y_pred,
                                                 sample_weight, sample_mask, function(i), k=k)
                else:
                    loss.update_terminal_regions(tree.tree_, X, y, residual, y_pred,
                                                 sample_weight, sample_mask,
                                                 function(i), k=k)
                
                # add tree to ensemble
                self.estimators_[i, k] = tree
            
            
            return y_pred
     'clf__max_depth': range(5, 200, 10),
     'clf__min_samples_split': [0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9],
     'clf__min_samples_leaf': [0.2, 0.3, 0.4, 0.5, 1],
     'clf__max_features': ['auto', 'sqrt', 'log2', None],
     'clf__max_leaf_nodes': [None, 10, 20, 30, 40, 50, 60]
 },
 'random_forest': {
     'clf__n_estimators': range(5, 200, 10),
     'clf__max_depth': range(5, 200, 10),
     'clf__min_samples_split': [0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9],
     'clf__min_samples_leaf': [0.2, 0.3, 0.4, 0.5, 1],
     'clf__max_features': ['auto', 'sqrt', 'log2', None],
     'clf__max_leaf_nodes': [None, 10, 20, 30, 40, 50, 60]
 },
 'ada_boost': {
     'clf__base_estimator': [DecisionTreeRegressor(max_depth=ii) for ii in range(10, 110, 10)],
     'clf__n_estimators': range(50, 200, 10),
     'clf__learning_rate': [0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9],
     'clf__loss': ['linear', 'square', 'exponential'],
 },
 'gradient_boost': {
     'clf__loss': ['ls', 'lad', 'huber', 'quantile'],
     'clf__learning_rate': [0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9],
     'clf__n_estimators': range(100, 350, 10),
     'clf__max_depth': range(5, 200, 10),
     'clf__min_samples_split': [0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9],
     'clf__min_samples_leaf': [0.2, 0.3, 0.4, 0.5, 1],
     'clf__max_features': ['auto', 'sqrt', 'log2', None],
     'clf__max_leaf_nodes': [None, 10, 20, 30, 40, 50, 60]
 },
 'cat_boost': {