def test_warm_start(): X = X_iris y = y_iris y_2classes = np.array([0] * 75 + [1] * 75) y_3classes = np.array([0] * 40 + [1] * 40 + [2] * 70) y_3classes_alt = np.array([0] * 50 + [1] * 50 + [3] * 50) y_4classes = np.array([0] * 37 + [1] * 37 + [2] * 38 + [3] * 38) y_5classes = np.array([0] * 30 + [1] * 30 + [2] * 30 + [3] * 30 + [4] * 30) # No error raised clf = MLPClassifier(hidden_layer_sizes=2, solver='lbfgs', warm_start=True).fit(X, y) clf.fit(X, y) clf.fit(X, y_3classes) for y_i in (y_2classes, y_3classes_alt, y_4classes, y_5classes): clf = MLPClassifier(hidden_layer_sizes=2, solver='lbfgs', warm_start=True).fit(X, y) message = ('warm_start can only be used where `y` has the same ' 'classes as in the previous call to fit.' ' Previously got [0 1 2], `y` has %s' % np.unique(y_i)) with pytest.raises(ValueError, match=re.escape(message)): clf.fit(X, y_i)
def test_tolerance(): # Test tolerance. # It should force the solver to exit the loop when it converges. X = [[3, 2], [1, 6]] y = [1, 0] clf = MLPClassifier(tol=0.5, max_iter=3000, solver='sgd') clf.fit(X, y) assert clf.max_iter > clf.n_iter_
def test_adaptive_learning_rate(): X = [[3, 2], [1, 6]] y = [1, 0] clf = MLPClassifier(tol=0.5, max_iter=3000, solver='sgd', learning_rate='adaptive') clf.fit(X, y) assert clf.max_iter > clf.n_iter_ assert 1e-6 > clf._optimizer.learning_rate
def test_early_stopping_stratified(): # Make sure data splitting for early stopping is stratified X = [[1, 2], [2, 3], [3, 4], [4, 5]] y = [0, 0, 0, 1] mlp = MLPClassifier(early_stopping=True) with pytest.raises( ValueError, match='The least populated class in y has only 1 member'): mlp.fit(X, y)
def test_partial_fit_errors(): # Test partial_fit error handling. X = [[3, 2], [1, 6]] y = [1, 0] # no classes passed with pytest.raises(ValueError): MLPClassifier(solver='sgd').partial_fit(X, y, classes=[2]) # lbfgs doesn't support partial_fit assert not hasattr(MLPClassifier(solver='lbfgs'), 'partial_fit')
def test_sparse_matrices(): # Test that sparse and dense input matrices output the same results. X = X_digits_binary[:50] y = y_digits_binary[:50] X_sparse = csr_matrix(X) mlp = MLPClassifier(solver='lbfgs', hidden_layer_sizes=15, random_state=1) mlp.fit(X, y) pred1 = mlp.predict(X) mlp.fit(X_sparse, y) pred2 = mlp.predict(X_sparse) assert_almost_equal(pred1, pred2) pred1 = mlp.predict(X) pred2 = mlp.predict(X_sparse) assert_array_equal(pred1, pred2)
def test_early_stopping(): X = X_digits_binary[:100] y = y_digits_binary[:100] tol = 0.2 clf = MLPClassifier(tol=tol, max_iter=3000, solver='sgd', early_stopping=True) clf.fit(X, y) assert clf.max_iter > clf.n_iter_ valid_scores = clf.validation_scores_ best_valid_score = clf.best_validation_score_ assert max(valid_scores) == best_valid_score assert best_valid_score + tol > valid_scores[-2] assert best_valid_score + tol > valid_scores[-1]
def test_lbfgs_classification_maxfun(X, y): # Test lbfgs parameter max_fun. # It should independently limit the number of iterations for lbfgs. max_fun = 10 # classification tests for activation in ACTIVATION_TYPES: mlp = MLPClassifier(solver='lbfgs', hidden_layer_sizes=50, max_iter=150, max_fun=max_fun, shuffle=True, random_state=1, activation=activation) with pytest.warns(ConvergenceWarning): mlp.fit(X, y) assert max_fun >= mlp.n_iter_
def test_n_iter_no_change(): # test n_iter_no_change using binary data set # the classifying fitting process is not prone to loss curve fluctuations X = X_digits_binary[:100] y = y_digits_binary[:100] tol = 0.01 max_iter = 3000 # test multiple n_iter_no_change for n_iter_no_change in [2, 5, 10, 50, 100]: clf = MLPClassifier(tol=tol, max_iter=max_iter, solver='sgd', n_iter_no_change=n_iter_no_change) clf.fit(X, y) # validate n_iter_no_change assert clf._no_improvement_count == n_iter_no_change + 1 assert max_iter > clf.n_iter_
def test_partial_fit_unseen_classes(): # Non regression test for bug 6994 # Tests for labeling errors in partial fit clf = MLPClassifier(random_state=0) clf.partial_fit([[1], [2], [3]], ["a", "b", "c"], classes=["a", "b", "c", "d"]) clf.partial_fit([[4]], ["d"]) assert clf.score([[1], [2], [3], [4]], ["a", "b", "c", "d"]) > 0
def test_alpha(): # Test that larger alpha yields weights closer to zero X = X_digits_binary[:100] y = y_digits_binary[:100] alpha_vectors = [] alpha_values = np.arange(2) absolute_sum = lambda x: np.sum(np.abs(x)) for alpha in alpha_values: mlp = MLPClassifier(hidden_layer_sizes=10, alpha=alpha, random_state=1) with ignore_warnings(category=ConvergenceWarning): mlp.fit(X, y) alpha_vectors.append( np.array( [absolute_sum(mlp.coefs_[0]), absolute_sum(mlp.coefs_[1])])) for i in range(len(alpha_values) - 1): assert (alpha_vectors[i] > alpha_vectors[i + 1]).all()
def test_partial_fit_classes_error(): # Tests that passing different classes to partial_fit raises an error X = [[3, 2]] y = [0] clf = MLPClassifier(solver='sgd') clf.partial_fit(X, y, classes=[0, 1]) with pytest.raises(ValueError): clf.partial_fit(X, y, classes=[1, 2])
def test_n_iter_no_change_inf(): # test n_iter_no_change using binary data set # the fitting process should go to max_iter iterations X = X_digits_binary[:100] y = y_digits_binary[:100] # set a ridiculous tolerance # this should always trigger _update_no_improvement_count() tol = 1e9 # fit n_iter_no_change = np.inf max_iter = 3000 clf = MLPClassifier(tol=tol, max_iter=max_iter, solver='sgd', n_iter_no_change=n_iter_no_change) clf.fit(X, y) # validate n_iter_no_change doesn't cause early stopping assert clf.n_iter_ == max_iter # validate _update_no_improvement_count() was always triggered assert clf._no_improvement_count == clf.n_iter_ - 1
def test_verbose_sgd(): # Test verbose. X = [[3, 2], [1, 6]] y = [1, 0] clf = MLPClassifier(solver='sgd', max_iter=2, verbose=10, hidden_layer_sizes=2) old_stdout = sys.stdout sys.stdout = output = StringIO() with ignore_warnings(category=ConvergenceWarning): clf.fit(X, y) clf.partial_fit(X, y) sys.stdout = old_stdout assert 'Iteration' in output.getvalue()
def test_predict_proba_multiclass(): # Test that predict_proba works as expected for multi class. X = X_digits_multi[:10] y = y_digits_multi[:10] clf = MLPClassifier(hidden_layer_sizes=5) with ignore_warnings(category=ConvergenceWarning): clf.fit(X, y) y_proba = clf.predict_proba(X) y_log_proba = clf.predict_log_proba(X) (n_samples, n_classes) = y.shape[0], np.unique(y).size proba_max = y_proba.argmax(axis=1) proba_log_max = y_log_proba.argmax(axis=1) assert y_proba.shape == (n_samples, n_classes) assert_array_equal(proba_max, proba_log_max) assert_array_equal(y_log_proba, np.log(y_proba))
def test_lbfgs_classification(X, y): # Test lbfgs on classification. # It should achieve a score higher than 0.95 for the binary and multi-class # versions of the digits dataset. X_train = X[:150] y_train = y[:150] X_test = X[150:] expected_shape_dtype = (X_test.shape[0], y_train.dtype.kind) for activation in ACTIVATION_TYPES: mlp = MLPClassifier(solver='lbfgs', hidden_layer_sizes=50, max_iter=150, shuffle=True, random_state=1, activation=activation) mlp.fit(X_train, y_train) y_predict = mlp.predict(X_test) assert mlp.score(X_train, y_train) > 0.95 assert ((y_predict.shape[0], y_predict.dtype.kind) == expected_shape_dtype)
def test_learning_rate_warmstart(): # Tests that warm_start reuse past solutions. X = [[3, 2], [1, 6], [5, 6], [-2, -4]] y = [1, 1, 1, 0] for learning_rate in ["invscaling", "constant"]: mlp = MLPClassifier(solver='sgd', hidden_layer_sizes=4, learning_rate=learning_rate, max_iter=1, power_t=0.25, warm_start=True) with ignore_warnings(category=ConvergenceWarning): mlp.fit(X, y) prev_eta = mlp._optimizer.learning_rate mlp.fit(X, y) post_eta = mlp._optimizer.learning_rate if learning_rate == 'constant': assert prev_eta == post_eta elif learning_rate == 'invscaling': assert (mlp.learning_rate_init / pow(8 + 1, mlp.power_t) == post_eta)
def test_predict_proba_multilabel(): # Test that predict_proba works as expected for multilabel. # Multilabel should not use softmax which makes probabilities sum to 1 X, Y = make_multilabel_classification(n_samples=50, random_state=0, return_indicator=True) n_samples, n_classes = Y.shape clf = MLPClassifier(solver='lbfgs', hidden_layer_sizes=30, random_state=0) clf.fit(X, Y) y_proba = clf.predict_proba(X) assert y_proba.shape == (n_samples, n_classes) assert_array_equal(y_proba > 0.5, Y) y_log_proba = clf.predict_log_proba(X) proba_max = y_proba.argmax(axis=1) proba_log_max = y_log_proba.argmax(axis=1) assert (y_proba.sum(1) - 1).dot(y_proba.sum(1) - 1) > 1e-10 assert_array_equal(proba_max, proba_log_max) assert_array_equal(y_log_proba, np.log(y_proba))
def test_predict_proba_binary(): # Test that predict_proba works as expected for binary class. X = X_digits_binary[:50] y = y_digits_binary[:50] clf = MLPClassifier(hidden_layer_sizes=5, activation='logistic', random_state=1) with ignore_warnings(category=ConvergenceWarning): clf.fit(X, y) y_proba = clf.predict_proba(X) y_log_proba = clf.predict_log_proba(X) (n_samples, n_classes) = y.shape[0], 2 proba_max = y_proba.argmax(axis=1) proba_log_max = y_log_proba.argmax(axis=1) assert y_proba.shape == (n_samples, n_classes) assert_array_equal(proba_max, proba_log_max) assert_array_equal(y_log_proba, np.log(y_proba)) assert roc_auc_score(y, y_proba[:, 1]) == 1.0
def test_gradient(): # Test gradient. # This makes sure that the activation functions and their derivatives # are correct. The numerical and analytical computation of the gradient # should be close. for n_labels in [2, 3]: n_samples = 5 n_features = 10 random_state = np.random.RandomState(seed=42) X = random_state.rand(n_samples, n_features) y = 1 + np.mod(np.arange(n_samples) + 1, n_labels) Y = LabelBinarizer().fit_transform(y) for activation in ACTIVATION_TYPES: mlp = MLPClassifier(activation=activation, hidden_layer_sizes=10, solver='lbfgs', alpha=1e-5, learning_rate_init=0.2, max_iter=1, random_state=1) mlp.fit(X, y) theta = np.hstack( [l.ravel() for l in mlp.coefs_ + mlp.intercepts_]) layer_units = ([X.shape[1]] + [mlp.hidden_layer_sizes] + [mlp.n_outputs_]) activations = [] deltas = [] coef_grads = [] intercept_grads = [] activations.append(X) for i in range(mlp.n_layers_ - 1): activations.append(np.empty((X.shape[0], layer_units[i + 1]))) deltas.append(np.empty((X.shape[0], layer_units[i + 1]))) fan_in = layer_units[i] fan_out = layer_units[i + 1] coef_grads.append(np.empty((fan_in, fan_out))) intercept_grads.append(np.empty(fan_out)) # analytically compute the gradients def loss_grad_fun(t): return mlp._loss_grad_lbfgs(t, X, Y, activations, deltas, coef_grads, intercept_grads) [value, grad] = loss_grad_fun(theta) numgrad = np.zeros(np.size(theta)) n = np.size(theta, 0) E = np.eye(n) epsilon = 1e-5 # numerically compute the gradients for i in range(n): dtheta = E[:, i] * epsilon numgrad[i] = ((loss_grad_fun(theta + dtheta)[0] - loss_grad_fun(theta - dtheta)[0]) / (epsilon * 2.0)) assert_almost_equal(numgrad, grad)
def test_fit(): # Test that the algorithm solution is equal to a worked out example. X = np.array([[0.6, 0.8, 0.7]]) y = np.array([0]) mlp = MLPClassifier(solver='sgd', learning_rate_init=0.1, alpha=0.1, activation='logistic', random_state=1, max_iter=1, hidden_layer_sizes=2, momentum=0) # set weights mlp.coefs_ = [0] * 2 mlp.intercepts_ = [0] * 2 mlp.n_outputs_ = 1 mlp.coefs_[0] = np.array([[0.1, 0.2], [0.3, 0.1], [0.5, 0]]) mlp.coefs_[1] = np.array([[0.1], [0.2]]) mlp.intercepts_[0] = np.array([0.1, 0.1]) mlp.intercepts_[1] = np.array([1.0]) mlp._coef_grads = [] * 2 mlp._intercept_grads = [] * 2 # Initialize parameters mlp.n_iter_ = 0 mlp.learning_rate_ = 0.1 # Compute the number of layers mlp.n_layers_ = 3 # Pre-allocate gradient matrices mlp._coef_grads = [0] * (mlp.n_layers_ - 1) mlp._intercept_grads = [0] * (mlp.n_layers_ - 1) mlp.out_activation_ = 'logistic' mlp.t_ = 0 mlp.best_loss_ = np.inf mlp.loss_curve_ = [] mlp._no_improvement_count = 0 mlp._intercept_velocity = [ np.zeros_like(intercepts) for intercepts in mlp.intercepts_ ] mlp._coef_velocity = [np.zeros_like(coefs) for coefs in mlp.coefs_] mlp.partial_fit(X, y, classes=[0, 1]) # Manually worked out example # h1 = g(X1 * W_i1 + b11) = g(0.6 * 0.1 + 0.8 * 0.3 + 0.7 * 0.5 + 0.1) # = 0.679178699175393 # h2 = g(X2 * W_i2 + b12) = g(0.6 * 0.2 + 0.8 * 0.1 + 0.7 * 0 + 0.1) # = 0.574442516811659 # o1 = g(h * W2 + b21) = g(0.679 * 0.1 + 0.574 * 0.2 + 1) # = 0.7654329236196236 # d21 = -(0 - 0.765) = 0.765 # d11 = (1 - 0.679) * 0.679 * 0.765 * 0.1 = 0.01667 # d12 = (1 - 0.574) * 0.574 * 0.765 * 0.2 = 0.0374 # W1grad11 = X1 * d11 + alpha * W11 = 0.6 * 0.01667 + 0.1 * 0.1 = 0.0200 # W1grad11 = X1 * d12 + alpha * W12 = 0.6 * 0.0374 + 0.1 * 0.2 = 0.04244 # W1grad21 = X2 * d11 + alpha * W13 = 0.8 * 0.01667 + 0.1 * 0.3 = 0.043336 # W1grad22 = X2 * d12 + alpha * W14 = 0.8 * 0.0374 + 0.1 * 0.1 = 0.03992 # W1grad31 = X3 * d11 + alpha * W15 = 0.6 * 0.01667 + 0.1 * 0.5 = 0.060002 # W1grad32 = X3 * d12 + alpha * W16 = 0.6 * 0.0374 + 0.1 * 0 = 0.02244 # W2grad1 = h1 * d21 + alpha * W21 = 0.679 * 0.765 + 0.1 * 0.1 = 0.5294 # W2grad2 = h2 * d21 + alpha * W22 = 0.574 * 0.765 + 0.1 * 0.2 = 0.45911 # b1grad1 = d11 = 0.01667 # b1grad2 = d12 = 0.0374 # b2grad = d21 = 0.765 # W1 = W1 - eta * [W1grad11, .., W1grad32] = [[0.1, 0.2], [0.3, 0.1], # [0.5, 0]] - 0.1 * [[0.0200, 0.04244], [0.043336, 0.03992], # [0.060002, 0.02244]] = [[0.098, 0.195756], [0.2956664, # 0.096008], [0.4939998, -0.002244]] # W2 = W2 - eta * [W2grad1, W2grad2] = [[0.1], [0.2]] - 0.1 * # [[0.5294], [0.45911]] = [[0.04706], [0.154089]] # b1 = b1 - eta * [b1grad1, b1grad2] = 0.1 - 0.1 * [0.01667, 0.0374] # = [0.098333, 0.09626] # b2 = b2 - eta * b2grad = 1.0 - 0.1 * 0.765 = 0.9235 assert_almost_equal(mlp.coefs_[0], np.array([[0.098, 0.195756], [0.2956664, 0.096008], [0.4939998, -0.002244]]), decimal=3) assert_almost_equal(mlp.coefs_[1], np.array([[0.04706], [0.154089]]), decimal=3) assert_almost_equal(mlp.intercepts_[0], np.array([0.098333, 0.09626]), decimal=3) assert_almost_equal(mlp.intercepts_[1], np.array(0.9235), decimal=3) # Testing output # h1 = g(X1 * W_i1 + b11) = g(0.6 * 0.098 + 0.8 * 0.2956664 + # 0.7 * 0.4939998 + 0.098333) = 0.677 # h2 = g(X2 * W_i2 + b12) = g(0.6 * 0.195756 + 0.8 * 0.096008 + # 0.7 * -0.002244 + 0.09626) = 0.572 # o1 = h * W2 + b21 = 0.677 * 0.04706 + # 0.572 * 0.154089 + 0.9235 = 1.043 # prob = sigmoid(o1) = 0.739 assert_almost_equal(mlp.predict_proba(X)[0, 1], 0.739, decimal=3)
def test_multilabel_classification(): # Test that multi-label classification works as expected. # test fit method X, y = make_multilabel_classification(n_samples=50, random_state=0, return_indicator=True) mlp = MLPClassifier(solver='lbfgs', hidden_layer_sizes=50, alpha=1e-5, max_iter=150, random_state=0, activation='logistic', learning_rate_init=0.2) mlp.fit(X, y) assert mlp.score(X, y) > 0.97 # test partial fit method mlp = MLPClassifier(solver='sgd', hidden_layer_sizes=50, max_iter=150, random_state=0, activation='logistic', alpha=1e-5, learning_rate_init=0.2) for i in range(100): mlp.partial_fit(X, y, classes=[0, 1, 2, 3, 4]) assert mlp.score(X, y) > 0.9 # Make sure early stopping still work now that spliting is stratified by # default (it is disabled for multilabel classification) mlp = MLPClassifier(early_stopping=True) mlp.fit(X, y).predict(X)
def test_partial_fit_classification(): # Test partial_fit on classification. # `partial_fit` should yield the same results as 'fit' for binary and # multi-class classification. for X, y in classification_datasets: X = X y = y mlp = MLPClassifier(solver='sgd', max_iter=100, random_state=1, tol=0, alpha=1e-5, learning_rate_init=0.2) with ignore_warnings(category=ConvergenceWarning): mlp.fit(X, y) pred1 = mlp.predict(X) mlp = MLPClassifier(solver='sgd', random_state=1, alpha=1e-5, learning_rate_init=0.2) for i in range(100): mlp.partial_fit(X, y, classes=np.unique(y)) pred2 = mlp.predict(X) assert_array_equal(pred1, pred2) assert mlp.score(X, y) > 0.95