class TestGradientBoostingClassifierConverter(TestCase):
    def setUp(self):
        np.random.seed(1)
        self.est = GradientBoostingClassifier(max_depth=2, n_estimators=10)
        self.est.fit([[0, 0], [0, 1], [1, 0], [1, 1]], [0, 1, 1, 1])
        self.ctx = TransformationContext(
            {
                Schema.INPUT: [IntegerNumericFeature("x1"), StringCategoricalFeature("x2", ["zero", "one"])],
                Schema.MODEL: [IntegerNumericFeature("x1"), StringCategoricalFeature("x2", ["zero", "one"])],
                Schema.DERIVED: [],
                Schema.OUTPUT: [IntegerCategoricalFeature("output", [0, 1])],
            }
        )
        self.converter = GradientBoostingConverter(estimator=self.est, context=self.ctx)

    def test_transform(self):
        p = self.converter.pmml()
        mm = p.MiningModel[0]
        assert mm.MiningSchema is not None, "Missing mining schema"
        assert len(mm.MiningSchema.MiningField) == 2, "Wrong number of mining fields"
        assert mm.Segmentation is not None, "Missing segmentation root"

    def test_transform_with_verification(self):
        p = self.converter.pmml(
            [
                {"x1": 0, "x2": "zero", "output": self.est.predict_proba([[0, 0]])[0, 1]},
                {"x1": 0, "x2": "one", "output": self.est.predict_proba([[0, 1]])[0, 1]},
                {"x1": 1, "x2": "zero", "output": self.est.predict_proba([[1, 0]])[0, 1]},
                {"x1": 1, "x2": "one", "output": self.est.predict_proba([[1, 1]])[0, 1]},
            ]
        )
        mm = p.MiningModel[0]
        assert mm.MiningSchema is not None, "Missing mining schema"
        assert len(mm.MiningSchema.MiningField) == 2, "Wrong number of mining fields"
        assert mm.Segmentation is not None, "Missing segmentation root"
 def setUp(self):
     np.random.seed(1)
     self.est = GradientBoostingClassifier(max_depth=2, n_estimators=10)
     self.est.fit([
         [0, 0],
         [0, 1],
         [1, 0],
         [1, 1],
     ], [0, 1, 1, 1])
     self.ctx = TransformationContext({
         Schema.INPUT: [
             IntegerNumericFeature('x1'),
             StringCategoricalFeature('x2', ['zero', 'one'])
         ],
         Schema.MODEL: [
             IntegerNumericFeature('x1'),
             StringCategoricalFeature('x2', ['zero', 'one'])
         ],
         Schema.DERIVED: [],
         Schema.OUTPUT: [
             IntegerCategoricalFeature('output', [0, 1])
         ]
     })
     self.converter = GradientBoostingConverter(
         estimator=self.est,
         context=self.ctx
     )
class TestGradientBoostingClassifierConverter(TestCase):
    def setUp(self):
        np.random.seed(1)
        self.est = GradientBoostingClassifier(max_depth=2, n_estimators=10)
        self.est.fit([
            [0, 0],
            [0, 1],
            [1, 0],
            [1, 1],
        ], [0, 1, 1, 1])
        self.ctx = TransformationContext({
            Schema.INPUT: [
                IntegerNumericFeature('x1'),
                StringCategoricalFeature('x2', ['zero', 'one'])
            ],
            Schema.MODEL: [
                IntegerNumericFeature('x1'),
                StringCategoricalFeature('x2', ['zero', 'one'])
            ],
            Schema.DERIVED: [],
            Schema.OUTPUT: [
                IntegerCategoricalFeature('output', [0, 1])
            ]
        })
        self.converter = GradientBoostingConverter(
            estimator=self.est,
            context=self.ctx
        )

    def test_transform(self):
        p = self.converter.pmml()
        mm = p.MiningModel[0]
        assert mm.MiningSchema is not None, 'Missing mining schema'
        assert len(mm.MiningSchema.MiningField) == 2, 'Wrong number of mining fields'
        assert mm.Segmentation is not None, 'Missing segmentation root'

    def test_transform_with_verification(self):
        p = self.converter.pmml([
            {'x1': 0, 'x2': 'zero', 'output#1': self.est.predict_proba([[0, 0]])[0, 1], 'output#0': self.est.predict_proba([[0, 0]])[0, 0], 'output': self.est.predict([[0, 0]])},
            {'x1': 0, 'x2': 'one', 'output#1': self.est.predict_proba([[0, 1]])[0, 1], 'output#0': self.est.predict_proba([[0, 1]])[0, 0], 'output': self.est.predict([[0, 1]])},
            {'x1': 1, 'x2': 'zero', 'output#1': self.est.predict_proba([[1, 0]])[0, 1], 'output#0': self.est.predict_proba([[1, 0]])[0, 0], 'output': self.est.predict([[1, 0]])},
            {'x1': 1, 'x2': 'one', 'output#1': self.est.predict_proba([[1, 1]])[0, 1], 'output#0': self.est.predict_proba([[1, 1]])[0, 0], 'output': self.est.predict([[1, 1]])},
        ])
        mm = p.MiningModel[0]
        assert mm.MiningSchema is not None, 'Missing mining schema'
        assert len(mm.MiningSchema.MiningField) == 2, 'Wrong number of mining fields'
        assert mm.Segmentation is not None, 'Missing segmentation root'
Exemple #4
0
 def setUp(self):
     np.random.seed(1)
     self.est = GradientBoostingClassifier(max_depth=2, n_estimators=10)
     self.est.fit([
         [0, 0],
         [0, 1],
         [1, 0],
         [1, 1],
     ], [0, 1, 1, 1])
     self.ctx = TransformationContext(
         input=[IntegerNumericFeature('x1'), StringCategoricalFeature('x2', ['zero', 'one'])],
         derived=[],
         model=[IntegerNumericFeature('x1'), StringCategoricalFeature('x2', ['zero', 'one'])],
         output=[RealNumericFeature('output')]
     )
     self.converter = GradientBoostingConverter(
         estimator=self.est,
         context=self.ctx
     )
Exemple #5
0
class TestGradientBoostingClassifierConverter(TestCase):
    def setUp(self):
        np.random.seed(1)
        self.est = GradientBoostingClassifier(max_depth=2, n_estimators=10)
        self.est.fit([
            [0, 0],
            [0, 1],
            [1, 0],
            [1, 1],
        ], [0, 1, 1, 1])
        self.ctx = TransformationContext(
            input=[IntegerNumericFeature('x1'), StringCategoricalFeature('x2', ['zero', 'one'])],
            derived=[],
            model=[IntegerNumericFeature('x1'), StringCategoricalFeature('x2', ['zero', 'one'])],
            output=[RealNumericFeature('output')]
        )
        self.converter = GradientBoostingConverter(
            estimator=self.est,
            context=self.ctx
        )

    def test_transform(self):
        p = self.converter.pmml()
        mm = p.MiningModel[0]
        assert mm.MiningSchema is not None, 'Missing mining schema'
        assert len(mm.MiningSchema.MiningField) == 3, 'Wrong number of mining fields'
        assert mm.Segmentation is not None, 'Missing segmentation root'

    def test_transform_with_verification(self):
        p = self.converter.pmml([
            {'x1': 0, 'x2': 'zero', 'output': self.est.predict_proba([[0, 0]])[0, 1]},
            {'x1': 0, 'x2': 'one', 'output': self.est.predict_proba([[0, 1]])[0, 1]},
            {'x1': 1, 'x2': 'zero', 'output': self.est.predict_proba([[1, 0]])[0, 1]},
            {'x1': 1, 'x2': 'one', 'output': self.est.predict_proba([[1, 1]])[0, 1]},
        ])
        mm = p.MiningModel[0]
        assert mm.MiningSchema is not None, 'Missing mining schema'
        assert len(mm.MiningSchema.MiningField) == 3, 'Wrong number of mining fields'
        assert mm.Segmentation is not None, 'Missing segmentation root'
Exemple #6
0
 def setUp(self):
     np.random.seed(1)
     self.est = GradientBoostingClassifier(max_depth=2, n_estimators=10)
     self.est.fit([
         [0, 0],
         [0, 1],
         [1, 0],
         [1, 1],
     ], [0, 1, 1, 1])
     self.ctx = TransformationContext({
         Schema.INPUT: [
             IntegerNumericFeature('x1'),
             StringCategoricalFeature('x2', ['zero', 'one'])
         ],
         Schema.MODEL: [
             IntegerNumericFeature('x1'),
             StringCategoricalFeature('x2', ['zero', 'one'])
         ],
         Schema.DERIVED: [],
         Schema.OUTPUT: [IntegerCategoricalFeature('output', [0, 1])]
     })
     self.converter = GradientBoostingConverter(estimator=self.est,
                                                context=self.ctx)
Exemple #7
0
 def setUp(self):
     self.model = GradientBoostingClassifier(n_estimators=2, max_depth=2)
     self.init_data_one_label()
     self.converter = GradientBoostingConverter(estimator=self.model,
                                                context=self.ctx)