Exemple #1
0
def test_refit_fits_underlying():
    X = np.array([1, 2, 3, 4]).reshape(-1, 1)
    y_ones = np.array([0, 1, 1, 1]).reshape(-1, )
    y_zeros = np.array([0, 0, 0, 1]).reshape(-1, )

    clf = DummyClassifier(strategy="most_frequent")
    clf.fit(X, y_ones)
    a = Thresholder(clf, threshold=0.2, refit=True)
    a.fit(X, y_zeros)

    assert a.predict(np.array([[1]])) == 0
Exemple #2
0
def test_stacking_classifier():
    '''
    Tests issue https://github.com/koaning/scikit-lego/issues/501

    No asserts are added as we only test for being exception free.
    When cloning the model in Thresholder an unfitted model is generated
    where no predict_proba exists
    '''
    estimators = [("dummy", DummyClassifier(strategy="constant", constant=0))]

    X = np.random.normal(0, 1, (100, 3))
    y = np.random.normal(0, 1, (100, )) < 0

    clf = StackingClassifier(estimators=estimators,
                             final_estimator=DummyClassifier(
                                 strategy="constant", constant=0))

    clf.fit(X, y)

    a = Thresholder(clf, threshold=0.2)
    a.fit(X, y)
    a.predict(X)