def reset(self): self.total_square_error = 0.0 self.average_error = 0.0 self.last_true_label = None self.last_prediction = None self.total_square_error_correction = FastBuffer(self.window_size) self.average_error_correction = FastBuffer(self.window_size)
def __init__(self, window_size=200): super().__init__() self.total_square_error = 0.0 self.average_error = 0.0 self.last_true_label = None self.last_prediction = None self.total_square_error_correction = FastBuffer(window_size) self.average_error_correction = FastBuffer(window_size) self.window_size = window_size
def reset(self, targets=None): if targets is not None: self.n_targets = len(targets) else: self.n_targets = 0 self.majority_classifier = 0 self.correct_no_change = 0 self.confusion_matrix.restart(self.n_targets) self.majority_classifier_correction = FastBuffer(self.window_size) self.correct_no_change_correction = FastBuffer(self.window_size)
def __configure(self, missing_value, strategy, window_size, new_value=1): if hasattr(missing_value, 'append'): self.missing_value = missing_value else: self.missing_value = [missing_value] self.strategy = strategy self.window_size = window_size self.new_value = new_value if strategy in ['mean', 'median', 'mode']: self.window = FastBuffer(max_size=window_size)
def __init__(self, targets=None, dtype=np.int64, window_size=200): super().__init__() if targets is not None: self.n_targets = len(targets) else: self.n_targets = 0 self.confusion_matrix = ConfusionMatrix(self.n_targets, dtype) self.last_class = None self.targets = targets self.window_size = window_size self.true_labels = FastBuffer(window_size) self.predictions = FastBuffer(window_size) self.temp = 0 self.last_prediction = None self.last_true_label = None self.majority_classifier = 0 self.correct_no_change = 0 self.majority_classifier_correction = FastBuffer(window_size) self.correct_no_change_correction = FastBuffer(window_size)
class WindowClassificationMeasurements(BaseObject): """ WindowClassificationMeasurements This class will maintain a fixed sized window of the newest information about one classifier. It can provide, as requested, any of the relevant current metrics about the classifier, measured inside the window. To keep track of statistics inside a window, the class will use a ConfusionMatrix object, alongside FastBuffers, to simulate fixed sized windows of the important classifier's attributes. Its functionalities are somewhat similar to those of the ClassificationMeasurements class. The difference is that the statistics kept by this class are local, or partial, while the statistics kept by the ClassificationMeasurements class are global. At any given moment, it can compute the following statistics: performance, kappa, kappa_t, kappa_m, majority_class and error rate. Parameters ---------- targets: list A list containing the possible labels. dtype: data type (Default: numpy.int64) The data type of the existing labels. window_size: int (Default: 200) The width of the window. Determines how many samples the object can see. Examples -------- """ def __init__(self, targets=None, dtype=np.int64, window_size=200): super().__init__() if targets is not None: self.n_targets = len(targets) else: self.n_targets = 0 self.confusion_matrix = ConfusionMatrix(self.n_targets, dtype) self.last_class = None self.targets = targets self.window_size = window_size self.true_labels = FastBuffer(window_size) self.predictions = FastBuffer(window_size) self.temp = 0 self.last_prediction = None self.last_true_label = None self.majority_classifier = 0 self.correct_no_change = 0 self.majority_classifier_correction = FastBuffer(window_size) self.correct_no_change_correction = FastBuffer(window_size) def reset(self, targets=None): if targets is not None: self.n_targets = len(targets) else: self.n_targets = 0 self.majority_classifier = 0 self.correct_no_change = 0 self.confusion_matrix.restart(self.n_targets) self.majority_classifier_correction = FastBuffer(self.window_size) self.correct_no_change_correction = FastBuffer(self.window_size) def add_result(self, sample, prediction): """ add_result Updates its statistics with the results of a prediction. If needed it will remove samples from the observation window. Parameters ---------- sample: int The true label. prediction: int The classifier's prediction """ true_y = self._get_target_index(sample, True) pred = self._get_target_index(prediction, True) old_true = self.true_labels.add_element(np.array([sample])) old_predict = self.predictions.add_element(np.array([prediction])) # Verify if its needed to decrease the count of any label # pair in the confusion matrix if (old_true is not None) and (old_predict is not None): self.temp += 1 error = self.confusion_matrix.remove( self._get_target_index(old_true[0]), self._get_target_index(old_predict[0])) self.correct_no_change += self.correct_no_change_correction.peek() self.majority_classifier += self.majority_classifier_correction.peek( ) # Verify if its needed to decrease the majority_classifier count if (self.get_majority_class() == sample) and (self.get_majority_class() is not None): self.majority_classifier += 1 self.majority_classifier_correction.add_element([-1]) else: self.majority_classifier_correction.add_element([0]) # Verify if its needed to decrease the correct_no_change if (self.last_true_label == sample) and (self.last_true_label is not None): self.correct_no_change += 1 self.correct_no_change_correction.add_element([-1]) else: self.correct_no_change_correction.add_element([0]) self.confusion_matrix.update(true_y, pred) self.last_true_label = sample self.last_prediction = prediction def get_last(self): return self.last_true_label, self.last_prediction def get_majority_class(self): """ get_majority_class Computes the window/local true majority class. Returns ------- int Returns the true window/local majority class. """ if (self.n_targets is None) or (self.n_targets == 0): return None majority_class = 0 max_prob = 0.0 for i in range(self.n_targets): sum = 0.0 for j in range(self.n_targets): sum += self.confusion_matrix.value_at(i, j) sum = sum / self.true_labels.get_current_size() if sum > max_prob: max_prob = sum majority_class = i return majority_class def get_performance(self): """ get_performance Computes the window/local performance. Returns ------- float Returns the window/local performance. """ sum_value = 0.0 n, _ = self.confusion_matrix.shape() for i in range(n): sum_value += self.confusion_matrix.value_at(i, i) try: return sum_value / self.true_labels.get_current_size() except ZeroDivisionError: return 0.0 def get_incorrectly_classified_ratio(self): return 1.0 - self.get_performance() def _get_target_index(self, target, add=False): """ _get_target_index Computes the index of an element in the self.targets list. Also reshapes the ConfusionMatrix and adds new found targets if add is True. Parameters ---------- target: int A class label. add: bool Either to add new found labels to the targets list or not. Returns ------- int The target index in the self.targets list. """ if (self.targets is None) and add: self.targets = [] self.targets.append(target) self.n_targets = len(self.targets) self.confusion_matrix.reshape(len(self.targets), len(self.targets)) elif (self.targets is None) and (not add): return None if ((target not in self.targets) and (add)): self.targets.append(target) self.n_targets = len(self.targets) self.confusion_matrix.reshape(len(self.targets), len(self.targets)) for i in range(len(self.targets)): if self.targets[i] == target: return i return None def get_kappa(self): """ get_kappa Computes the window/local Cohen's kappa coefficient. Returns ------- float Returns the window/local Cohen's kappa coefficient. """ p0 = self.get_performance() pc = 0.0 n, l = self.confusion_matrix.shape() for i in range(n): row = self.confusion_matrix.row(i) column = self.confusion_matrix.column(i) sum_row = np.sum(row) / self.true_labels.get_current_size() sum_column = np.sum(column) / self.true_labels.get_current_size() pc += sum_row * sum_column if pc == 1: return 1 return (p0 - pc) / (1.0 - pc) def get_kappa_t(self): """ get_kappa_t Computes the window/local Cohen's kappa T coefficient. This measures the temporal correlation between samples. Returns ------- float Returns the window/local Cohen's kappa T coefficient. """ p0 = self.get_performance() if self._sample_count != 0: pc = self.correct_no_change / self._sample_count else: pc = 0 if pc == 1: return 1 return (p0 - pc) / (1.0 - pc) def get_kappa_m(self): """ get_kappa_t Computes the window/local Cohen's kappa M coefficient. Returns ------- float Returns the window/local Cohen's kappa M coefficient. """ p0 = self.get_performance() if self._sample_count != 0: pc = self.majority_classifier / self._sample_count else: pc = 0 if pc == 1: return 1 return (p0 - pc) / (1.0 - pc) @property def _matrix(self): return self.confusion_matrix._matrix @property def _sample_count(self): return self.true_labels.get_current_size() def get_class_type(self): return 'collection' def get_info(self): return 'ClassificationMeasurements: targets: ' + str(self.targets) + \ ' - sample_count: ' + str(self._sample_count) + \ ' - window_size: ' + str(self.window_size) + \ ' - performance: ' + str(self.get_performance()) + \ ' - kappa: ' + str(self.get_kappa()) + \ ' - kappa_t: ' + str(self.get_kappa_t()) + \ ' - kappa_m: ' + str(self.get_kappa_m()) + \ ' - majority_class: ' + str(self.get_majority_class())
class WindowRegressionMeasurements(BaseObject): """ WindowRegressionMeasurements This class is used to keep updated statistics over a regression learner in a regression problem context inside a fixed sized window. It uses FastBuffer objects to simulate the fixed sized windows. It will keep track of partial metrics, that can be provided at any moment. The relevant metrics kept by an instance of this class are: MSE (mean square error) and MAE (mean absolute error). """ def __init__(self, window_size=200): super().__init__() self.total_square_error = 0.0 self.average_error = 0.0 self.last_true_label = None self.last_prediction = None self.total_square_error_correction = FastBuffer(window_size) self.average_error_correction = FastBuffer(window_size) self.window_size = window_size def reset(self): self.total_square_error = 0.0 self.average_error = 0.0 self.last_true_label = None self.last_prediction = None self.total_square_error_correction = FastBuffer(self.window_size) self.average_error_correction = FastBuffer(self.window_size) def add_result(self, sample, prediction): """ add_result Use the true label and the prediction to update the statistics. Parameters ---------- sample: int The true label. prediction: int The classifier's prediction """ self.last_true_label = sample self.last_prediction = prediction self.total_square_error += (sample - prediction) * (sample - prediction) self.average_error += np.absolute(sample - prediction) old_square = self.total_square_error_correction.add_element( np.array([-1 * ((sample - prediction) * (sample - prediction))])) old_average = self.average_error_correction.add_element( np.array([-1 * (np.absolute(sample - prediction))])) if (old_square is not None) and (old_average is not None): self.total_square_error += old_square[0] self.average_error += old_average[0] def get_mean_square_error(self): """ get_mean_square_error Computes the window/local mean square error. Returns ------- float Returns the window/local mean square error. """ if self._sample_count == 0: return 0.0 else: return self.total_square_error / self._sample_count def get_average_error(self): """ get_average_error Computes the window/local mean absolute error. Returns ------- float Returns the window/local mean absolute error. """ if self._sample_count == 0: return 0.0 else: return self.average_error / self._sample_count def get_last(self): return self.last_true_label, self.last_prediction @property def _sample_count(self): return self.total_square_error_correction.get_current_size() def get_class_type(self): return 'collection' def get_info(self): return 'RegressionMeasurements: sample_count: ' + str(self._sample_count) + \ ' - mean_square_error: ' + str(self.get_mean_square_error()) + \ ' - mean_absolute_error: ' + str(self.get_average_error())
class MissingValuesCleaner(BaseTransform): """ MissingValuesCleaner This is a transform object. It provides a simple way to replace missing values in samples with another value, which can be chosen from a set of replacing strategies. A missing value in a sample can be coded in many different ways, but the most common one is to use numpy's NaN, that's why that is the default missing value parameter. The user should choose the correct substitution strategy for his use case, as each strategy has its pros and cons. The strategy can be chosen from a set of predefined strategies, which are: 'zero', 'mean', 'median', 'mode', 'custom'. Parameters ---------- missing_value: int, char (Default: numpy.nan) The way a missed value is coded in the matrices that are to be transformed. strategy: string (Default: 'zero') The strategy adopted to find the missing value replacement. It can be one of the following: 'zero', 'mean', 'median', 'mode', 'custom'. window_size: int (Default: 200) Defines the window size for the 'mean', 'median' and 'mode' strategies. new_value: int (Default: 1) This is the replacement value in case the chosen strategy is 'custom'. Examples -------- >>> # Imports >>> import numpy as np >>> from skmultiflow .options.file_option import FileOption >>> from skmultiflow.data.file_stream import FileStream >>> from skmultiflow.filtering.base_filters import MissingValuesCleaner >>> # Setting up a stream >>> opt = FileOption('FILE', 'OPT_NAME', 'skmultiflow/datasets/covtype.csv', 'csv', False) >>> stream = FileStream(opt, -1, 1) >>> stream.prepare_for_use() >>> # Setting up the filter to substitute values -47 by the median of the >>> # last 10 samples >>> filter = MissingValuesCleaner(-47, 'median', 10) >>> X, y = stream.next_instance(10) >>> X[9, 0] = -47 >>> # We will use this list to keep track of values >>> list = [] >>> # Iterate over the first 9 samples, to build a sample window >>> for i in range(9): ... X_transf = filter.partial_fit_transform([X[i].tolist()]) ... list.append(X_transf[0][0]) ... print(X_transf) >>> >>> # Transform last sample. The first feature should be replaced by the list's >>> # median value >>> X_transf = filter.partial_fit_transform([X[9].tolist()]) >>> print(X_transf) >>> np.median(list) """ def __init__(self, missing_value=np.nan, strategy='zero', window_size=200, new_value=1): super().__init__() #default_values self.missing_value = np.nan self.strategy = 'zero' self.window_size = 200 self.window = None self.new_value = 1 self.__configure(missing_value, strategy, window_size, new_value) def __configure(self, missing_value, strategy, window_size, new_value=1): if hasattr(missing_value, 'append'): self.missing_value = missing_value else: self.missing_value = [missing_value] self.strategy = strategy self.window_size = window_size self.new_value = new_value if strategy in ['mean', 'median', 'mode']: self.window = FastBuffer(max_size=window_size) def transform(self, X): """ transform Does the transformation process in the samples in X. Parameters ---------- X: numpy.ndarray of shape (n_samples, n_features) The sample or set of samples that should be transformed. """ r, c = get_dimensions(X) for i in range(r): for j in range(c): if X[i][j] in self.missing_value: X[i][j] = self._get_substitute(j) return X def _get_substitute(self, column_index): """ _get_substitute Computes the replacement for a missing value. Parameters ---------- column_index: int The index from the column where the missing value was found. Returns ------- int or float The replacement. """ if self.strategy == 'zero': return 0 elif self.strategy == 'mean': if not self.window.isempty(): return np.mean( np.array( self.window.get_queue())[:, column_index:column_index + 1]) else: return self.new_value elif self.strategy == 'median': if not self.window.isempty(): return np.median( np.array( self.window.get_queue())[:, column_index:column_index + 1].flatten()) else: return self.new_value elif self.strategy == 'mode': if not self.window.isempty(): return stats.mode( np.array( self.window.get_queue())[:, column_index:column_index + 1].flatten()) else: return self.new_value elif self.strategy == 'custom': return self.new_value def partial_fit_transform(self, X, y=None): """ partial_fit_transform Partially fits the model and then apply the transform to the data. Parameters ---------- X: numpy.ndarray of shape (n_samples, n_features) The sample or set of samples that should be transformed. y: Array-like The true labels. Returns ------- numpy.ndarray of shape (n_samples, n_features) The transformed data. """ X = self.transform(X) if self.strategy in ['mean', 'median', 'mode']: self.window.add_element(X) return X def partial_fit(self, X, y=None): """ partial_fit Partial fits the model. Parameters ---------- X: numpy.ndarray of shape (n_samples, n_features) The sample or set of samples that should be transformed. y: Array-like The true labels. Returns ------- MissingValuesCleaner self """ X = np.asarray(X) if self.strategy in ['mean', 'meadian', 'mode']: self.window.add_element(X) return self def get_info(self): return 'MissingValueCleaner: missing_value: ' + str(self.missing_value) + \ ' - strategy: ' + self.strategy + \ ' - window_size: ' + str(self.window_size) + \ ' - new_value: ' + str(self.new_value)