def test_hat_mc(test_path):
    stream = ConceptDriftStream(stream=SEAGenerator(random_state=1,
                                                    noise_percentage=0.05),
                                drift_stream=SEAGenerator(
                                    random_state=2,
                                    classification_function=2,
                                    noise_percentage=0.05),
                                random_state=1,
                                position=250,
                                width=10)
    stream.prepare_for_use()

    learner = HAT(leaf_prediction='mc')

    cnt = 0
    max_samples = 1000
    y_pred = array('i')
    y_proba = []
    wait_samples = 20

    while cnt < max_samples:
        X, y = stream.next_sample()
        # Test every n samples
        if (cnt % wait_samples == 0) and (cnt != 0):
            y_pred.append(learner.predict(X)[0])
            y_proba.append(learner.predict_proba(X)[0])
        learner.partial_fit(X, y)
        cnt += 1

    expected_predictions = array('i', [
        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
        1
    ])
    assert np.alltrue(y_pred == expected_predictions)

    test_file = os.path.join(test_path, 'test_hoeffding_adaptive_tree_mc.npy')
    data = np.load(test_file)
    assert np.allclose(y_proba, data)

    expected_info = "HAT(binary_split=False, grace_period=200, leaf_prediction='mc',\n" \
                    "    max_byte_size=33554432, memory_estimate_period=1000000, nb_threshold=0,\n" \
                    "    no_preprune=False, nominal_attributes=None, remove_poor_atts=False,\n" \
                    "    split_confidence=1e-07, split_criterion='info_gain',\n" \
                    "    stop_mem_management=False, tie_threshold=0.05)"

    assert learner.get_info() == expected_info

    expected_model_1 = 'Leaf = Class 1.0 | {0.0: 398.0, 1.0: 1000.0}\n'

    assert (learner.get_model_description() == expected_model_1)

    assert type(learner.predict(X)) == np.ndarray
    assert type(learner.predict_proba(X)) == np.ndarray

    stream.restart()
    X, y = stream.next_sample(5000)

    learner = HAT(max_byte_size=30, leaf_prediction='mc', grace_period=10)
    learner.partial_fit(X, y)
def test_hat_nb(test_path):
    stream = ConceptDriftStream(stream=SEAGenerator(random_state=1,
                                                    noise_percentage=0.05),
                                drift_stream=SEAGenerator(
                                    random_state=2,
                                    classification_function=2,
                                    noise_percentage=0.05),
                                random_state=1,
                                position=250,
                                width=10)
    stream.prepare_for_use()

    learner = HAT(leaf_prediction='nb')

    cnt = 0
    max_samples = 1000
    y_pred = array('i')
    y_proba = []
    wait_samples = 20

    while cnt < max_samples:
        X, y = stream.next_sample()
        # Test every n samples
        if (cnt % wait_samples == 0) and (cnt != 0):
            y_pred.append(learner.predict(X)[0])
            y_proba.append(learner.predict_proba(X)[0])
        learner.partial_fit(X, y)
        cnt += 1

    expected_predictions = array('i', [
        1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0,
        1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1,
        1
    ])
    assert np.alltrue(y_pred == expected_predictions)

    test_file = os.path.join(test_path, 'test_hoeffding_adaptive_tree_nb.npy')
    data = np.load(test_file)
    assert np.allclose(y_proba, data)

    expected_info = 'HAT: max_byte_size: 33554432 - memory_estimate_period: 1000000 - grace_period: 200' \
                    ' - split_criterion: info_gain - split_confidence: 1e-07 - tie_threshold: 0.05' \
                    ' - binary_split: False - stop_mem_management: False - remove_poor_atts: False' \
                    ' - no_pre_prune: False - leaf_prediction: nb - nb_threshold: 0' \
                    ' - nominal_attributes: [] - '

    assert learner.get_info() == expected_info
    assert type(learner.predict(X)) == np.ndarray
    assert type(learner.predict_proba(X)) == np.ndarray
def test_hat_mc(test_path):
    stream = ConceptDriftStream(stream=SEAGenerator(random_state=1,
                                                    noise_percentage=0.05),
                                drift_stream=SEAGenerator(
                                    random_state=2,
                                    classification_function=2,
                                    noise_percentage=0.05),
                                random_state=1,
                                position=250,
                                width=10)
    stream.prepare_for_use()

    learner = HAT(leaf_prediction='mc')

    cnt = 0
    max_samples = 1000
    y_pred = array('i')
    y_proba = []
    wait_samples = 20

    while cnt < max_samples:
        X, y = stream.next_sample()
        # Test every n samples
        if (cnt % wait_samples == 0) and (cnt != 0):
            y_pred.append(learner.predict(X)[0])
            y_proba.append(learner.predict_proba(X)[0])
        learner.partial_fit(X, y)
        cnt += 1

    expected_predictions = array('i', [
        1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0,
        1
    ])
    assert np.alltrue(y_pred == expected_predictions)

    test_file = os.path.join(test_path, 'test_hoeffding_adaptive_tree_mc.npy')
    data = np.load(test_file)
    assert np.allclose(y_proba, data)

    expected_info = 'HAT: max_byte_size: 33554432 - memory_estimate_period: 1000000 - grace_period: 200' \
                    ' - split_criterion: info_gain - split_confidence: 1e-07 - tie_threshold: 0.05' \
                    ' - binary_split: False - stop_mem_management: False - remove_poor_atts: False' \
                    ' - no_pre_prune: False - leaf_prediction: mc - nb_threshold: 0' \
                    ' - nominal_attributes: [] - '

    assert learner.get_info() == expected_info

    expected_model_1 = 'Leaf = Class 1.0 | {0.0: 0.005295278636481529, 1.0: 1.9947047213635185}\n'
    expected_model_2 = 'Leaf = Class 1.0 | {0.0: 0.0052952786364815294, 1.0: 1.9947047213635185}\n'
    expected_model_3 = 'Leaf = Class 1.0 | {1.0: 1.9947047213635185, 0.0: 0.0052952786364815294}\n'
    assert (learner.get_model_description() == expected_model_1) \
           or  (learner.get_model_description() == expected_model_2) \
           or  (learner.get_model_description() == expected_model_3)

    stream.restart()
    X, y = stream.next_sample(5000)

    learner = HAT(max_byte_size=30, leaf_prediction='mc', grace_period=10)
    learner.partial_fit(X, y)
def test_HAT(test_path):
    stream = RandomTreeGenerator(tree_random_state=23, sample_random_state=12, n_classes=4, n_cat_features=2,
                                 n_num_features=5, n_categories_per_cat_feature=5, max_tree_depth=6, min_leaf_depth=3,
                                 fraction_leaves_per_level=0.15)
    stream.prepare_for_use()

    nominal_attr_idx = [x for x in range(5, stream.n_features)]
    learner = HAT(nominal_attributes=nominal_attr_idx)

    cnt = 0
    max_samples = 5000
    predictions = array('d')
    proba_predictions = []
    wait_samples = 100

    while cnt < max_samples:
        X, y = stream.next_sample()
        # Test every n samples
        if (cnt % wait_samples == 0) and (cnt != 0):
            predictions.append(learner.predict(X)[0])
            proba_predictions.append(learner.predict_proba(X)[0])
        learner.partial_fit(X, y)
        cnt += 1

    expected_predictions = array('d', [2.0, 1.0, 1.0, 1.0, 0.0, 3.0, 0.0, 1.0, 1.0, 2.0,
                                       0.0, 2.0, 1.0, 1.0, 2.0, 1.0, 3.0, 0.0, 1.0, 1.0,
                                       1.0, 1.0, 0.0, 3.0, 1.0, 2.0, 1.0, 1.0, 3.0, 2.0,
                                       1.0, 2.0, 2.0, 2.0, 1.0, 1.0, 1.0, 0.0, 1.0, 2.0,
                                       0.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 3.0, 2.0])

    test_file = os.path.join(test_path, 'test_hoeffding_adaptive_tree.npy')

    data = np.load(test_file)

    assert np.alltrue(predictions == expected_predictions)
    assert np.allclose(proba_predictions, data)

    expected_info = 'HAT: max_byte_size: 33554432 - memory_estimate_period: 1000000 - grace_period: 200' \
                    ' - split_criterion: info_gain - split_confidence: 1e-07 - tie_threshold: 0.05' \
                    ' - binary_split: False - stop_mem_management: False - remove_poor_atts: False' \
                    ' - no_pre_prune: False - leaf_prediction: nba - nb_threshold: 0' \
                    ' - nominal_attributes: [5, 6, 7, 8, 9, 10, 11, 12, 13, 14] - '

    assert learner.get_info() == expected_info

    expected_model_1 = 'Leaf = Class 1.0 | {0.0: 1367.3628584299263, 1.0: 1702.2738590243584,' \
                       ' 2.0: 952.1668539501372, 3.0: 822.1964285955778}\n'
    expected_model_2 = 'Leaf = Class 1.0 | {1.0: 1702.2738590243584, 2.0: 952.1668539501372,' \
                       ' 0.0: 1367.3628584299263, 3.0: 822.1964285955778}\n'
    expected_model_3 = 'Leaf = Class 1.0 | {1.0: 1702.2738590243584, 2.0: 952.16685395013724, ' \
                       '0.0: 1367.3628584299263, 3.0: 822.1964285955778}\n'   # Python 3.6
    expected_model_4 = 'Leaf = Class 1.0 | {0.0: 1367.3628584299263, 1.0: 1702.2738590243584,' \
                       ' 2.0: 952.16685395013724, 3.0: 822.1964285955778}\n'  # Python 3.4

    assert (learner.get_model_description() == expected_model_1) \
           or (learner.get_model_description() == expected_model_2) \
           or (learner.get_model_description() == expected_model_3) \
           or (learner.get_model_description() == expected_model_4)
Exemple #5
0
def test_hat_nba(test_path):
    stream = HyperplaneGenerator(mag_change=0.001,
                                 noise_percentage=0.1,
                                 random_state=2)

    stream.prepare_for_use()

    learner = HAT(leaf_prediction='nba')

    cnt = 0
    max_samples = 5000
    y_pred = array('i')
    y_proba = []
    wait_samples = 100

    while cnt < max_samples:
        X, y = stream.next_sample()
        # Test every n samples
        if (cnt % wait_samples == 0) and (cnt != 0):
            y_pred.append(learner.predict(X)[0])
            y_proba.append(learner.predict_proba(X)[0])
        learner.partial_fit(X, y)
        cnt += 1

    expected_predictions = array('i', [
        1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,
        0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1,
        0
    ])

    assert np.alltrue(y_pred == expected_predictions)

    test_file = os.path.join(test_path, 'test_hoeffding_adaptive_tree_nba.npy')
    data = np.load(test_file)
    assert np.allclose(y_proba, data)

    expected_info = "HAT(binary_split=False, bootstrap_sampling=True, grace_period=200,\n" \
                    "    leaf_prediction='nba', max_byte_size=33554432,\n" \
                    "    memory_estimate_period=1000000, nb_threshold=0, no_preprune=False,\n" \
                    "    nominal_attributes=None, remove_poor_atts=False, split_confidence=1e-07,\n" \
                    "    split_criterion='info_gain', stop_mem_management=False, tie_threshold=0.05)"

    assert learner.get_info() == expected_info
    assert type(learner.predict(X)) == np.ndarray
    assert type(learner.predict_proba(X)) == np.ndarray
Exemple #6
0
# ### Entrenar el clasificador (modelo)

# In[2]:

clasificador = HAT()
print(clasificador.get_info())

print("start training")
clasificador.fit(X_train, y_train, classes=None, sample_weight=None)
print("end training")

# In[3]:

print("start predict")
predict = clasificador.predict(X_test)
print("end predict")

# In[4]:

print("shape_predict")
print(predict.shape)
print("score")
print(clasificador.score(X_test, y_test))

import matplotlib.pyplot as plt
#%matplotlib inline
plt.rcParams['figure.figsize'] = (16, 9)
plt.style.use('ggplot')
plt.hist([predict, y_test])
plt.show()