Exemple #1
0
    index_label.append(label.index(i))

# print(index_label)
print(len(index_label),len(set(TAG_label)))

"""用多标记学习进行预测"""
k =[];k1=[]
k2=[];k3=[]
labelcount =1853
endianness = 'little'
feature_type = 'float'
encode_nominal = True
load_sparse = True
X, y1 = Dataset.load_arff_to_numpy("medical_data2.arff",
                                  labelcount=labelcount,
                                  endian="little",
                                  input_feature_type=feature_type,
                                  encode_nominal=encode_nominal,
                                  load_sparse=load_sparse)

X=X.toarray()
#kmeans=KMeans(n_clusters=13,random_state=0).fit(X)
kmeans2=hcluster.fclusterdata(X, criterion='maxclust', t=12)
#kmeans = SpectralClustering(n_clusters=8).fit(X)
#print kmeans.labels_
index_0=[];index_1=[];index_2=[];index_3=[];index_4=[];index_5=[]
for i,li in enumerate(kmeans2):
    if li==0:
        index_0.append(i)
    elif li==1:
        index_1.append(i)
    elif li==2:
Exemple #2
0
# where the labels are located,
# big = at the beginning of the file
endianness = 'little'

# dtype used in the feature space
feature_type = 'float'

# whether the nominal attributes should be encoded as integers
encode_nominal = True

# if True - use the sparse loading mechanism from liac-arff
# if False - load dense representation and convert to sparse
load_sparse = True

# load data
X_train, y_train = Dataset.load_arff_to_numpy(
    "path_to_data/dataset-train.dump.bz2",
    labelcount=labelcount,
    endian="big",
    input_feature_type=feature_type,
    encode_nominal=encode_nominal,
    load_sparse=load_sparse)

X_test, y_test = Dataset.load_arff_to_numpy(
    "path_to_data/dataset-train.dump.bz2",
    labelcount=labelcount,
    endian="big",
    input_feature_type=feature_type,
    encode_nominal=encode_nominal,
    load_sparse=load_sparse)