Exemple #1
0
 def test_apply(self, boston_X, boston_y):
     tree = RangerTreeRegressor()
     tree.fit(boston_X, boston_y)
     leaves = tree.apply(boston_X)
     assert isinstance(leaves, np.ndarray)
     assert np.all(leaves > 0)
     assert len(leaves) == len(boston_X)
Exemple #2
0
 def test_fit(self, boston_X, boston_y):
     tree = RangerTreeRegressor()
     with pytest.raises(NotFittedError):
         check_is_fitted(tree)
     tree.fit(boston_X, boston_y)
     check_is_fitted(tree)
     assert hasattr(tree, "ranger_forest_")
     assert hasattr(tree, "n_features_in_")
Exemple #3
0
 def test_verbose(self, boston_X, boston_y, verbose, capfd):
     tree = RangerTreeRegressor(verbose=verbose)
     tree.fit(boston_X, boston_y)
     captured = capfd.readouterr()
     if verbose:
         assert len(captured.out) > 0
     else:
         assert len(captured.out) == 0
Exemple #4
0
    def test_sample_fraction_replace(self, boston_X, boston_y, replace):
        tree = RangerTreeRegressor(replace=replace)
        tree.fit(boston_X, boston_y)

        if replace:
            assert tree.sample_fraction_ == [1.0]
        else:
            assert tree.sample_fraction_ == [0.632]
Exemple #5
0
 def test_serialize(self, boston_X, boston_y):
     tf = tempfile.TemporaryFile()
     tree = RangerTreeRegressor()
     tree.fit(boston_X, boston_y)
     pickle.dump(tree, tf)
     tf.seek(0)
     new_tree = pickle.load(tf)
     pred = new_tree.predict(boston_X)
     assert len(pred) == boston_X.shape[0]
Exemple #6
0
    def test_sample_fraction(self, boston_X, boston_y):
        tree = RangerTreeRegressor(sample_fraction=0.69)
        tree.fit(boston_X, boston_y)
        assert tree.sample_fraction_ == [0.69]

        # test with single record
        boston_X_record = boston_X[0:1, :]
        pred = tree.predict(boston_X_record)
        assert len(pred) == 1
Exemple #7
0
 def test_tree_interface(self, boston_X, boston_y):
     tree = RangerTreeRegressor()
     tree.fit(boston_X, boston_y)
     # access attributes the way we would expect to in sklearn
     tree_ = tree.tree_
     children_left = tree_.children_left
     children_right = tree_.children_right
     feature = tree_.feature
     threshold = tree_.threshold
     max_depth = tree_.max_depth
     n_node_samples = tree_.n_node_samples
     weighted_n_node_samples = tree_.weighted_n_node_samples
     node_count = tree_.node_count
     capacity = tree_.capacity
     n_outputs = tree_.n_outputs
     n_classes = tree_.n_classes
     value = tree_.value
     assert value.shape == (node_count, 1, 1)
Exemple #8
0
    def test_importance(
        self,
        boston_X,
        boston_y,
        importance,
        scale_permutation_importance,
        local_importance,
    ):
        tree = RangerTreeRegressor(
            importance=importance,
            scale_permutation_importance=scale_permutation_importance,
            local_importance=local_importance,
        )

        if importance not in [
                "none", "impurity", "impurity_corrected", "permutation"
        ]:
            with pytest.raises(ValueError):
                tree.fit(boston_X, boston_y)
            return

        tree.fit(boston_X, boston_y)
        if importance == "none":
            assert tree.importance_mode_ == 0
        elif importance == "impurity":
            assert tree.importance_mode_ == 1
        elif importance == "impurity_corrected":
            assert tree.importance_mode_ == 5
        elif importance == "permutation":
            if local_importance:
                assert tree.importance_mode_ == 6
            elif scale_permutation_importance:
                assert tree.importance_mode_ == 2
            else:
                assert tree.importance_mode_ == 3
Exemple #9
0
    def test_mtry(self, boston_X, boston_y, mtry):
        tree = RangerTreeRegressor(mtry=mtry)

        if callable(mtry) and mtry(5) > 5:
            with pytest.raises(ValueError):
                tree.fit(boston_X, boston_y)
            return
        elif not callable(mtry) and (mtry < 0 or mtry > boston_X.shape[0]):
            with pytest.raises(ValueError):
                tree.fit(boston_X, boston_y)
            return

        tree.fit(boston_X, boston_y)
        if callable(mtry):
            assert tree.mtry_ == mtry(boston_X.shape[1])
        else:
            assert tree.mtry_ == mtry
Exemple #10
0
    def test_predict(self, boston_X, boston_y):
        tree = RangerTreeRegressor()
        tree.fit(boston_X, boston_y)
        pred = tree.predict(boston_X)
        assert len(pred) == boston_X.shape[0]

        # test with single record
        boston_X_record = boston_X[0:1, :]
        pred = tree.predict(boston_X_record)
        assert len(pred) == 1
Exemple #11
0
    def test_categorical_features(self, boston_X, boston_y,
                                  respect_categorical_features):
        # add a categorical feature
        categorical_col = np.atleast_2d(
            np.array([random.choice([0, 1])
                      for _ in range(boston_X.shape[0])]))
        boston_X_c = np.hstack((boston_X, categorical_col.transpose()))
        categorical_features = [boston_X.shape[1]]

        tree = RangerTreeRegressor(
            respect_categorical_features=respect_categorical_features,
            categorical_features=categorical_features,
        )

        if respect_categorical_features not in [
                "partition", "ignore", "order"
        ]:
            with pytest.raises(ValueError):
                tree.fit(boston_X_c, boston_y)
            return

        tree.fit(boston_X_c, boston_y)
        tree.predict(boston_X_c)
Exemple #12
0
 def test_check_estimator(self):
     check_estimator(RangerTreeRegressor())
Exemple #13
0
 def test_clone(self, boston_X, boston_y):
     tree = RangerTreeRegressor()
     tree.fit(boston_X, boston_y)
     clone(tree)
Exemple #14
0
 def test_init(self):
     _ = RangerTreeRegressor()
Exemple #15
0
    def test_split_rule(self, boston_X, boston_y, split_rule):
        tree = RangerTreeRegressor(split_rule=split_rule)
        assert tree.criterion == split_rule

        if split_rule not in ["variance", "extratrees", "maxstat", "beta"]:
            with pytest.raises(ValueError):
                tree.fit(boston_X, boston_y)
            return

        # beta can only be used with targets between 0 and 1
        if split_rule == "beta":
            with pytest.raises(ValueError):
                tree.fit(boston_X, boston_y)

        boston_01 = [0.5 for _ in boston_y]
        tree.fit(boston_X, boston_01)

        if split_rule == "variance":
            assert tree.split_rule_ == 1
        elif split_rule == "extratrees":
            assert tree.split_rule_ == 5
        elif split_rule == "maxstat":
            assert tree.split_rule_ == 4
        elif split_rule == "beta":
            assert tree.split_rule_ == 6

        if split_rule == "extratrees":
            tree = RangerTreeRegressor(
                split_rule=split_rule,
                respect_categorical_features="partition",
                save_memory=True,
            )
            with pytest.raises(ValueError):
                tree.fit(boston_X, boston_y)
        else:
            tree = RangerTreeRegressor(split_rule=split_rule,
                                       num_random_splits=2)
            with pytest.raises(ValueError):
                tree.fit(boston_X, boston_y)
Exemple #16
0
 def test_decision_path(self, boston_X, boston_y):
     tree = RangerTreeRegressor()
     tree.fit(boston_X, boston_y)
     paths = tree.decision_path(boston_X)
     assert isinstance(paths, csr_matrix)
     assert paths.shape[0] == len(boston_X)
Exemple #17
0
    def test_split_select_weights(self, boston_X, boston_y):
        n_trees = 1
        weights = [0.1] * boston_X.shape[1]
        tree = RangerTreeRegressor()
        tree.fit(boston_X, boston_y, split_select_weights=weights)

        weights = [0.1] * (boston_X.shape[1] - 1)
        tree = RangerTreeRegressor()

        with pytest.raises(RuntimeError):
            tree.fit(boston_X, boston_y, split_select_weights=weights)

        weights = [[0.1] * (boston_X.shape[1])] * n_trees
        tree = RangerTreeRegressor()
        tree.fit(boston_X, boston_y, split_select_weights=weights)

        weights = [[0.1] * (boston_X.shape[1])] * (n_trees + 1)
        tree = RangerTreeRegressor()
        with pytest.raises(RuntimeError):
            tree.fit(boston_X, boston_y, split_select_weights=weights)
Exemple #18
0
 def test_get_n_leaves(self, boston_X, boston_y):
     tree = RangerTreeRegressor()
     tree.fit(boston_X, boston_y)
     leaves = tree.get_n_leaves()
     assert isinstance(leaves, int)
     assert np.all(leaves > 0)
Exemple #19
0
 def test_get_depth(self, boston_X, boston_y):
     tree = RangerTreeRegressor()
     tree.fit(boston_X, boston_y)
     depth = tree.get_depth()
     assert isinstance(depth, int)
     assert depth > 0
Exemple #20
0
    def test_inbag(self, boston_X, boston_y):
        inbag = [[1, 2, 3]]
        tree = RangerTreeRegressor(inbag=inbag)
        tree.fit(boston_X, boston_y)

        # can't use inbag with sample weight
        tree = RangerTreeRegressor(inbag=inbag)
        with pytest.raises(ValueError):
            tree.fit(boston_X, boston_y, sample_weight=[1] * len(boston_y))

        # can't use class sampling and inbag
        tree = RangerTreeRegressor(inbag=inbag, sample_fraction=[1, 1])
        with pytest.raises(ValueError):
            tree.fit(boston_X, boston_y)
Exemple #21
0
 def test_always_split_features(self, boston_X, boston_y):
     tree = RangerTreeRegressor(always_split_features=[0])
     tree.fit(boston_X, boston_y)
     # feature 0 is in every tree split
     for tree in tree.ranger_forest_["forest"]["split_var_ids"]:
         assert 0 in tree
Exemple #22
0
    def test_regularization(self, boston_X, boston_y):
        tree = RangerTreeRegressor()
        tree.fit(boston_X, boston_y)
        assert tree.regularization_factor_ == []
        assert not tree.use_regularization_factor_

        # vector must be between 0 and 1 and length matching feature num
        for r in [[1.1], [-0.1], [1, 1]]:
            tree = RangerTreeRegressor(regularization_factor=r)
            with pytest.raises(ValueError):
                tree.fit(boston_X, boston_y)

        # vector of ones isn't applied
        tree = RangerTreeRegressor(regularization_factor=[1] *
                                   boston_X.shape[1])
        tree.fit(boston_X, boston_y)
        assert tree.regularization_factor_ == []
        assert not tree.use_regularization_factor_

        # regularization vector is used
        reg = [0.5]
        tree = RangerTreeRegressor(regularization_factor=reg)
        tree.fit(boston_X, boston_y)
        assert tree.regularization_factor_ == reg
        assert tree.use_regularization_factor_