def test_apply(self, iris_X, iris_y): tree = RangerTreeClassifier() tree.fit(iris_X, iris_y) leaves = tree.apply(iris_X) assert isinstance(leaves, np.ndarray) assert np.all(leaves > 0) assert len(leaves) == len(iris_X)
def test_importance(self, iris_X, iris_y, importance, scale_permutation_importance, local_importance): tree = RangerTreeClassifier( importance=importance, scale_permutation_importance=scale_permutation_importance, local_importance=local_importance, ) if importance not in [ "none", "impurity", "impurity_corrected", "permutation" ]: with pytest.raises(ValueError): tree.fit(iris_X, iris_y) return tree.fit(iris_X, iris_y) if importance == "none": assert tree.importance_mode_ == 0 elif importance == "impurity": assert tree.importance_mode_ == 1 elif importance == "impurity_corrected": assert tree.importance_mode_ == 5 elif importance == "permutation": if local_importance: assert tree.importance_mode_ == 6 elif scale_permutation_importance: assert tree.importance_mode_ == 2 else: assert tree.importance_mode_ == 3
def test_verbose(self, iris_X, iris_y, verbose, capfd): tree = RangerTreeClassifier(verbose=verbose) tree.fit(iris_X, iris_y) captured = capfd.readouterr() if verbose: assert len(captured.out) > 0 else: assert len(captured.out) == 0
def test_sample_fraction_replace(self, iris_X, iris_y, replace): tree = RangerTreeClassifier(replace=replace) tree.fit(iris_X, iris_y) if replace: assert tree.sample_fraction_ == [1.0] else: assert tree.sample_fraction_ == [0.632]
def test_serialize(self, iris_X, iris_y): tf = tempfile.TemporaryFile() tree = RangerTreeClassifier() tree.fit(iris_X, iris_y) pickle.dump(tree, tf) tf.seek(0) new_tree = pickle.load(tf) pred = new_tree.predict(iris_X) assert len(pred) == iris_X.shape[0]
def test_predict_log_proba(self, iris_X, iris_y): tree = RangerTreeClassifier() tree.fit(iris_X, iris_y) pred = tree.predict_log_proba(iris_X) assert len(pred) == iris_X.shape[0] # test with single record iris_X_record = iris_X[0:1, :] pred = tree.predict_log_proba(iris_X_record) assert len(pred) == 1
def test_fit(self, iris_X, iris_y): tree = RangerTreeClassifier() with pytest.raises(NotFittedError): check_is_fitted(tree) tree.fit(iris_X, iris_y) check_is_fitted(tree) assert hasattr(tree, "classes_") assert hasattr(tree, "n_classes_") assert hasattr(tree, "ranger_forest_") assert hasattr(tree, "ranger_class_order_") assert hasattr(tree, "n_features_in_")
def test_regularization(self, iris_X, iris_y): tree = RangerTreeClassifier() tree.fit(iris_X, iris_y) assert tree.regularization_factor_ == [] assert not tree.use_regularization_factor_ # vector must be between 0 and 1 and length matching feature num for r in [[1.1], [-0.1], [1, 1]]: tree = RangerTreeClassifier(regularization_factor=r) with pytest.raises(ValueError): tree.fit(iris_X, iris_y) # vector of ones isn't applied tree = RangerTreeClassifier(regularization_factor=[1] * iris_X.shape[1]) tree.fit(iris_X, iris_y) assert tree.regularization_factor_ == [] assert not tree.use_regularization_factor_ # regularization vector is used reg = [0.5] tree = RangerTreeClassifier(regularization_factor=reg) tree.fit(iris_X, iris_y) assert tree.regularization_factor_ == reg assert tree.use_regularization_factor_
def test_sample_fraction(self, iris_X, iris_y): tree = RangerTreeClassifier(sample_fraction=[0.69]) tree.fit(iris_X, iris_y) assert tree.sample_fraction_ == [0.69] tree = RangerTreeClassifier(sample_fraction=0.69) tree.fit(iris_X, iris_y) assert tree.sample_fraction_ == [0.69] # test with single record iris_X_record = iris_X[0:1, :] pred = tree.predict(iris_X_record) assert len(pred) == 1 pred = tree.predict_proba(iris_X_record) assert len(pred) == 1 pred = tree.predict_log_proba(iris_X_record) assert len(pred) == 1
def test_tree_interface(self, iris_X, iris_y): tree = RangerTreeClassifier() tree.fit(iris_X, iris_y) # access attributes the way we would expect to in sklearn tree_ = tree.tree_ children_left = tree_.children_left children_right = tree_.children_right feature = tree_.feature threshold = tree_.threshold max_depth = tree_.max_depth n_node_samples = tree_.n_node_samples weighted_n_node_samples = tree_.weighted_n_node_samples node_count = tree_.node_count capacity = tree_.capacity n_outputs = tree_.n_outputs n_classes = tree_.n_classes value = tree_.value assert value.shape == (node_count, 1, len(np.unique(iris_y)))
def test_accuracy(self, iris_X, iris_y): X_train, X_test, y_train, y_test = train_test_split(iris_X, iris_y, test_size=0.33, random_state=42) # train and test a random forest classifier rf = RandomForestClassifier() rf.fit(X_train, y_train) y_pred_rf = rf.predict(X_test) rf_acc = accuracy_score(y_test, y_pred_rf) # train and test a ranger classifier ra = RangerTreeClassifier() ra.fit(X_train, y_train) y_pred_ra = ra.predict(X_test) ranger_acc = accuracy_score(y_test, y_pred_ra) # the accuracy should be good assert rf_acc > 0.9 assert ranger_acc > 0.9
def test_class_weights(self, iris_X, iris_y): X_train, X_test, y_train, y_test = train_test_split(iris_X, iris_y, test_size=0.5, random_state=42) tree = RangerTreeClassifier() weights = { 0: 0.7, 1: 0.2, 2: 0.1, } tree.fit(X_train, y_train, class_weights=weights) tree.predict(X_test) tree = RangerTreeClassifier() m = {0: "a", 1: "b", 2: "c"} y_train_str = [m.get(v) for v in y_train] weights = { "a": 0.7, "b": 0.2, "c": 0.1, } tree.fit(X_train, y_train_str, class_weights=weights) tree.predict(X_test) weights = { 0: 0.7, } with pytest.raises(ValueError): tree.fit(X_train, y_train, class_weights=weights)
def test_categorical_features(self, iris_X, iris_y, respect_categorical_features): # add a categorical feature categorical_col = np.atleast_2d( np.array([random.choice([0, 1]) for _ in range(iris_X.shape[0])])) iris_X_c = np.hstack((iris_X, categorical_col.transpose())) categorical_features = [iris_X.shape[1]] tree = RangerTreeClassifier( respect_categorical_features=respect_categorical_features, ) if respect_categorical_features not in [ "partition", "ignore", "order" ]: with pytest.raises(ValueError): tree.fit(iris_X_c, iris_y, categorical_features=categorical_features) return tree.fit(iris_X_c, iris_y, categorical_features=categorical_features) tree.predict(iris_X_c)
def test_split_rule(self, iris_X, iris_y, split_rule): tree = RangerTreeClassifier(split_rule=split_rule) assert tree.criterion == split_rule if split_rule not in ["gini", "extratrees", "hellinger"]: with pytest.raises(ValueError): tree.fit(iris_X, iris_y) return # hellinger can only be used in binary classification if split_rule == "hellinger": with pytest.raises(ValueError): tree.fit(iris_X, iris_y) iris_2 = [0 if v == 2 else v for v in iris_y] tree.fit(iris_X, iris_2) if split_rule == "gini": assert tree.split_rule_ == 1 elif split_rule == "extratrees": assert tree.split_rule_ == 5 if split_rule == "hellinger": assert tree.split_rule_ == 7 if split_rule == "extratrees": tree = RangerTreeClassifier( split_rule=split_rule, respect_categorical_features="partition", save_memory=True, ) with pytest.raises(ValueError): tree.fit(iris_X, iris_y) else: tree = RangerTreeClassifier(split_rule=split_rule, num_random_splits=2) with pytest.raises(ValueError): tree.fit(iris_X, iris_y)
def test_split_select_weights(self, iris_X, iris_y): n_trees = 1 weights = [0.1] * iris_X.shape[1] tree = RangerTreeClassifier() tree.fit(iris_X, iris_y, split_select_weights=weights) weights = [0.1] * (iris_X.shape[1] - 1) tree = RangerTreeClassifier() with pytest.raises(RuntimeError): tree.fit(iris_X, iris_y, split_select_weights=weights) weights = [[0.1] * (iris_X.shape[1])] * n_trees tree = RangerTreeClassifier() tree.fit(iris_X, iris_y, split_select_weights=weights) weights = [[0.1] * (iris_X.shape[1])] * (n_trees + 1) tree = RangerTreeClassifier() with pytest.raises(RuntimeError): tree.fit(iris_X, iris_y, split_select_weights=weights)
def test_inbag(self, iris_X, iris_y): inbag = [[1, 2, 3]] tree = RangerTreeClassifier(inbag=inbag) tree.fit(iris_X, iris_y) # can't use inbag with sample weight tree = RangerTreeClassifier(inbag=inbag) with pytest.raises(ValueError): tree.fit(iris_X, iris_y, sample_weight=[1] * len(iris_y)) # can't use class sampling and inbag tree = RangerTreeClassifier(inbag=inbag, sample_fraction=[1, 1]) with pytest.raises(ValueError): tree.fit(iris_X, iris_y)
def test_mtry(self, iris_X, iris_y, mtry): tree = RangerTreeClassifier(mtry=mtry) if callable(mtry) and mtry(5) > 5: with pytest.raises(ValueError): tree.fit(iris_X, iris_y) return elif not callable(mtry) and (mtry < 0 or mtry > iris_X.shape[0]): with pytest.raises(ValueError): tree.fit(iris_X, iris_y) return tree.fit(iris_X, iris_y) if callable(mtry): assert tree.mtry_ == mtry(iris_X.shape[1]) else: assert tree.mtry_ == mtry
def test_clone(self, iris_X, iris_y): tree = RangerTreeClassifier() tree.fit(iris_X, iris_y) clone(tree)
def test_decision_path(self, iris_X, iris_y): tree = RangerTreeClassifier() tree.fit(iris_X, iris_y) paths = tree.decision_path(iris_X) assert isinstance(paths, csr_matrix) assert paths.shape[0] == len(iris_X)
def test_always_split_features(self, iris_X, iris_y): tree = RangerTreeClassifier() tree.fit(iris_X, iris_y, always_split_features=[0]) # feature 0 is in every tree split for tree in tree.ranger_forest_["forest"]["split_var_ids"]: assert 0 in tree
def test_get_n_leaves(self, iris_X, iris_y): tree = RangerTreeClassifier() tree.fit(iris_X, iris_y) leaves = tree.get_n_leaves() assert isinstance(leaves, int) assert np.all(leaves > 0)
def test_get_depth(self, iris_X, iris_y): tree = RangerTreeClassifier() tree.fit(iris_X, iris_y) depth = tree.get_depth() assert isinstance(depth, int) assert depth > 0