def test_apply(self, lung_X, lung_y): tree = RangerTreeSurvival() tree.fit(lung_X, lung_y) leaves = tree.apply(lung_X) assert isinstance(leaves, np.ndarray) assert np.all(leaves > 0) assert len(leaves) == len(lung_X)
def test_split_rule(self, lung_X, lung_y, split_rule): tree = RangerTreeSurvival(split_rule=split_rule) assert tree.criterion == split_rule if split_rule not in [ "logrank", "extratrees", "C", "C_ignore_ties", "maxstat" ]: with pytest.raises(ValueError): tree.fit(lung_X, lung_y) return tree.fit(lung_X, lung_y) if split_rule == "logrank": assert tree.split_rule_ == 1 elif split_rule == "extratrees": assert tree.split_rule_ == 5 elif split_rule == "C": assert tree.split_rule_ == 2 elif split_rule == "C_ignore_ties": assert tree.split_rule_ == 3 elif split_rule == "maxstat": assert tree.split_rule_ == 4 if split_rule != "extratrees": tree = RangerTreeSurvival(split_rule=split_rule, num_random_splits=2) with pytest.raises(ValueError): tree.fit(lung_X, lung_y)
def test_verbose(self, lung_X, lung_y, verbose, capfd): tree = RangerTreeSurvival(verbose=verbose) tree.fit(lung_X, lung_y) captured = capfd.readouterr() if verbose: assert len(captured.out) > 0 else: assert len(captured.out) == 0
def test_sample_fraction_replace(self, lung_X, lung_y, replace): tree = RangerTreeSurvival(replace=replace) tree.fit(lung_X, lung_y) if replace: assert tree.sample_fraction_ == [1.0] else: assert tree.sample_fraction_ == [0.632]
def test_serialize(self, lung_X, lung_y): tf = tempfile.TemporaryFile() tree = RangerTreeSurvival() tree.fit(lung_X, lung_y) pickle.dump(tree, tf) tf.seek(0) new_tree = pickle.load(tf) pred = new_tree.predict(lung_X) assert len(pred) == lung_X.shape[0]
def test_sample_fraction(self, lung_X, lung_y): tree = RangerTreeSurvival(sample_fraction=0.69) tree.fit(lung_X, lung_y) assert tree.sample_fraction_ == [0.69] # test with single record lung_X_record = lung_X.values[0:1, :] pred = tree.predict(lung_X_record) assert len(pred) == 1
def test_fit(self, lung_X, lung_y): tree = RangerTreeSurvival() with pytest.raises(NotFittedError): check_is_fitted(tree) tree.fit(lung_X, lung_y) check_is_fitted(tree) assert hasattr(tree, "event_times_") assert hasattr(tree, "cumulative_hazard_function_") assert hasattr(tree, "ranger_forest_") assert hasattr(tree, "n_features_in_")
def test_sample_weight(self, lung_X, lung_y): forest_w = RangerTreeSurvival() forest_w.fit(lung_X, lung_y, sample_weight=[1] * len(lung_y)) tree = RangerTreeSurvival() tree.fit(lung_X, lung_y) pred_w = forest_w.predict(lung_X) pred = tree.predict(lung_X) np.testing.assert_array_equal(pred.reshape(-1, 1), pred_w.reshape(-1, 1))
def test_tree_interface(self, lung_X, lung_y): tree = RangerTreeSurvival() tree.fit(lung_X, lung_y) # access attributes the way we would expect to in sklearn tree_ = tree.tree_ children_left = tree_.children_left children_right = tree_.children_right feature = tree_.feature threshold = tree_.threshold max_depth = tree_.max_depth n_node_samples = tree_.n_node_samples weighted_n_node_samples = tree_.weighted_n_node_samples node_count = tree_.node_count capacity = tree_.capacity n_outputs = tree_.n_outputs n_classes = tree_.n_classes
def get_estimator(self, idx): """Extract a single estimator tree from the forest. :param int idx: The index of the tree to extract. """ check_is_fitted(self) if not self.enable_tree_details: raise ValueError( "enable_tree_details must be True prior to training") return RangerTreeSurvival.from_forest(self, idx=idx)
def test_importance(self, lung_X, lung_y, importance, scale_permutation_importance, local_importance): tree = RangerTreeSurvival( importance=importance, scale_permutation_importance=scale_permutation_importance, local_importance=local_importance, ) if importance not in [ "none", "impurity", "impurity_corrected", "permutation" ]: with pytest.raises(ValueError): tree.fit(lung_X, lung_y) return tree.fit(lung_X, lung_y) if importance == "none": assert tree.importance_mode_ == 0 elif importance == "impurity": assert tree.importance_mode_ == 1 elif importance == "impurity_corrected": assert tree.importance_mode_ == 5 elif importance == "permutation": if local_importance: assert tree.importance_mode_ == 6 elif scale_permutation_importance: assert tree.importance_mode_ == 2 else: assert tree.importance_mode_ == 3
def estimators_(self): try: check_is_fitted(self) except NotFittedError: raise AttributeError( f"{self.__class__.__name__} object has no attribute 'estimators_'" ) from None if not self.enable_tree_details: raise ValueError( "enable_tree_details must be True prior to training") return [ RangerTreeSurvival.from_forest(self, idx=idx) for idx in range(self.n_estimators) ]
def test_mtry(self, lung_X, lung_y, mtry): tree = RangerTreeSurvival(mtry=mtry) if callable(mtry) and mtry(5) > 5: with pytest.raises(ValueError): tree.fit(lung_X, lung_y) return elif not callable(mtry) and (mtry < 0 or mtry > lung_X.shape[0]): with pytest.raises(ValueError): tree.fit(lung_X, lung_y) return tree.fit(lung_X, lung_y) if callable(mtry): assert tree.mtry_ == mtry(lung_X.shape[1]) else: assert tree.mtry_ == mtry
def test_predict(self, lung_X, lung_y): tree = RangerTreeSurvival() tree.fit(lung_X, lung_y) pred = tree.predict(lung_X) assert len(pred) == lung_X.shape[0] # test with single record lung_X_record = lung_X.values[0:1, :] pred = tree.predict(lung_X_record) assert len(pred) == 1
def test_categorical_features(self, lung_X, lung_y, respect_categorical_features): # add a categorical feature categorical_col = np.atleast_2d( np.array([random.choice([0, 1]) for _ in range(lung_X.shape[0])])) lung_X_c = np.hstack((lung_X, categorical_col.transpose())) categorical_features = [lung_X.shape[1]] tree = RangerTreeSurvival( respect_categorical_features=respect_categorical_features, ) if respect_categorical_features not in [ "partition", "ignore", "order" ]: with pytest.raises(ValueError): tree.fit(lung_X_c, lung_y, categorical_features=categorical_features) return tree.fit(lung_X_c, lung_y, categorical_features=categorical_features) tree.predict(lung_X_c)
def test_get_depth(self, lung_X, lung_y): tree = RangerTreeSurvival() tree.fit(lung_X, lung_y) depth = tree.get_depth() assert isinstance(depth, int) assert depth > 0
def test_init(self): _ = RangerTreeSurvival()
def test_split_select_weights(self, lung_X, lung_y): n_trees = 1 weights = [0.1] * lung_X.shape[1] tree = RangerTreeSurvival() tree.fit(lung_X, lung_y, split_select_weights=weights) weights = [0.1] * (lung_X.shape[1] - 1) tree = RangerTreeSurvival() with pytest.raises(RuntimeError): tree.fit(lung_X, lung_y, split_select_weights=weights) weights = [[0.1] * (lung_X.shape[1])] * n_trees tree = RangerTreeSurvival() tree.fit(lung_X, lung_y, split_select_weights=weights) weights = [[0.1] * (lung_X.shape[1])] * (n_trees + 1) tree = RangerTreeSurvival() with pytest.raises(RuntimeError): tree.fit(lung_X, lung_y, split_select_weights=weights)
def test_clone(self, lung_X, lung_y): tree = RangerTreeSurvival() tree.fit(lung_X, lung_y) clone(tree)
def test_regularization(self, lung_X, lung_y): tree = RangerTreeSurvival() tree.fit(lung_X, lung_y) assert tree.regularization_factor_ == [] assert not tree.use_regularization_factor_ # vector must be between 0 and 1 and length matching feature num for r in [[1.1], [-0.1], [1, 1]]: tree = RangerTreeSurvival(regularization_factor=r) with pytest.raises(ValueError): tree.fit(lung_X, lung_y) # vector of ones isn't applied tree = RangerTreeSurvival(regularization_factor=[1] * lung_X.shape[1]) tree.fit(lung_X, lung_y) assert tree.regularization_factor_ == [] assert not tree.use_regularization_factor_ # regularization vector is used reg = [0.5] tree = RangerTreeSurvival(regularization_factor=reg, ) tree.fit(lung_X, lung_y) assert tree.regularization_factor_ == reg assert tree.use_regularization_factor_
def test_predict_survival_function(self, lung_X, lung_y): tree = RangerTreeSurvival() tree.fit(lung_X, lung_y) pred = tree.predict_survival_function(lung_X) assert len(pred) == lung_X.shape[0]
def test_always_split_features(self, lung_X, lung_y): tree = RangerTreeSurvival() tree.fit(lung_X, lung_y, always_split_features=[0]) # feature 0 is in every tree split for tree in tree.ranger_forest_["forest"]["split_var_ids"]: assert 0 in tree
def test_decision_path(self, lung_X, lung_y): tree = RangerTreeSurvival() tree.fit(lung_X, lung_y) paths = tree.decision_path(lung_X) assert isinstance(paths, csr_matrix) assert paths.shape[0] == len(lung_X)
def test_get_tags(self): tree = RangerTreeSurvival() tags = tree._get_tags() assert tags["requires_y"]
def test_get_n_leaves(self, lung_X, lung_y): tree = RangerTreeSurvival() tree.fit(lung_X, lung_y) leaves = tree.get_n_leaves() assert isinstance(leaves, int) assert np.all(leaves > 0)
def test_inbag(self, lung_X, lung_y): inbag = [[1, 2, 3]] tree = RangerTreeSurvival(inbag=inbag) tree.fit(lung_X, lung_y) # can't use inbag with sample weight tree = RangerTreeSurvival(inbag=inbag) with pytest.raises(ValueError): tree.fit(lung_X, lung_y, sample_weight=[1] * len(lung_y)) # can't use class sampling and inbag tree = RangerTreeSurvival(inbag=inbag, sample_fraction=[1, 1]) with pytest.raises(ValueError): tree.fit(lung_X, lung_y)