def test_write_dataframe_to_ts_success(tmp_path, dataset):
    """Tests whether a dataset can be written by the .ts writer then read in."""
    # load an example dataset
    path = os.path.join(
        os.path.dirname(sktime.__file__),
        f"datasets/data/{dataset}/{dataset}_TEST.ts",
    )
    test_X, test_y = load_from_tsfile_to_dataframe(path)
    # output the dataframe in a ts file
    write_dataframe_to_tsfile(
        data=test_X,
        path=tmp_path,
        problem_name=dataset,
        class_label=np.unique(test_y),
        class_value_list=test_y,
        comment="""
          The data was derived from twelve monthly electrical power demand
          time series from Italy and first used in the paper "Intelligent
          Icons: Integrating Lite-Weight Data Mining and Visualization into
          GUI Operating Systems". The classification task is to distinguish
          days from Oct to March (inclusive) from April to September.
        """,
        fold="_transform",
    )
    # load data back from the ts file
    result = f"{tmp_path}/{dataset}/{dataset}_transform.ts"
    res_X, res_y = load_from_tsfile_to_dataframe(result)
    # check if the dataframes are the same
    assert_frame_equal(res_X, test_X)
def test_write_dataframe_to_ts_fail(tmp_path):
    """Tests if non-dataframes are handled correctly."""
    with pytest.raises(ValueError, match="Data provided must be a DataFrame"):
        write_dataframe_to_tsfile(
            data=np.random.rand(3, 2),
            path=str(tmp_path),
            problem_name="GunPoint",
        )