Exemple #1
0
def forecasting_autoarima(y_train, y_test, s):
    fh = np.arange(len(y_test)) + 1
    forecaster = AutoARIMA(sp=s)
    forecaster.fit(y_train)
    y_pred = forecaster.predict(fh)
    plot_ys(y_train, y_test, y_pred, labels=["y_train", "y_test", "y_pred"])
    st.pyplot()
Exemple #2
0
def main():
    df = datasets.load_airline(
    )  #Univariate, monthly records from 1949 to 60 (144 records)
    y_train, y_test = temporal_train_test_split(
        df, test_size=36)  #36 months for testing

    forecaster = NaiveForecaster(
        strategy='seasonal_last', sp=12
    )  #model strategy: last, mean, seasonal_last. sp=12months (yearly season)
    forecaster.fit(y_train)  #fit
    fh = np.arange(1,
                   len(y_test) +
                   1)  #forecast horizon: array with the same lenght of y_test
    y_pred = forecaster.predict(fh)  #pred

    forecaster2 = AutoARIMA(sp=12, suppress_warnings=True, trace=1)
    forecaster2.fit(y_train)
    y_pred2 = forecaster2.predict(fh)

    forecaster3 = ExponentialSmoothing(trend='add',
                                       damped='True',
                                       seasonal='multiplicative',
                                       sp=12)
    forecaster3.fit(y_train)
    y_pred3 = forecaster3.predict(fh)

    forecaster4 = ThetaForecaster(sp=12)
    forecaster4.fit(y_train)
    y_pred4 = forecaster4.predict(fh)

    forecaster5 = EnsembleForecaster([
        ('NaiveForecaster', NaiveForecaster(strategy='seasonal_last', sp=12)),
        ('AutoARIMA', AutoARIMA(sp=12, suppress_warnings=True)),
        ('Exp Smoothing',
         ExponentialSmoothing(trend='add',
                              damped='True',
                              seasonal='multiplicative',
                              sp=12)), ('Theta', ThetaForecaster(sp=12))
    ])
    forecaster5.fit(y_train)
    y_pred5 = forecaster5.predict(fh)

    plot_ys(y_train,
            y_test,
            y_pred,
            y_pred2,
            y_pred3,
            y_pred4,
            y_pred5,
            labels=[
                'Train', 'Test', 'Naive Forecaster', 'AutoARIMA',
                'Exp Smoothing', 'Theta', 'Ensemble'
            ])
    plt.xlabel('Months')
    plt.ylabel('Number of flights')
    plt.title(
        'Time series of the number of international flights in function of time'
    )
    plt.show()

    print('SMAPE Error for NaiveForecaster is:',
          100 * round(smape_loss(y_test, y_pred), 3), '%')
    print('SMAPE Error for AutoARIMA is:',
          100 * round(smape_loss(y_test, y_pred2), 3), '%')
    print('SMAPE Error for Exp Smoothing is:',
          100 * round(smape_loss(y_test, y_pred3), 3), '%')
    print('SMAPE Error for Theta is:',
          100 * round(smape_loss(y_test, y_pred4), 3), '%')
    print('SMAPE Error for Ensemble is:',
          100 * round(smape_loss(y_test, y_pred5), 3), '%')