def _make_predict_args(estimator, *args, **kwargs): if is_forecaster(estimator): fh = 1 return (fh,) elif is_classifier(estimator): X, y = make_classification_problem(*args, **kwargs) return (X,) elif is_regressor(estimator): X, y = make_regression_problem(*args, **kwargs) return (X,) else: raise ValueError(f"Estimator type: {type(estimator)} not supported")
def _make_fit_args(estimator, random_state=None, **kwargs): if is_forecaster(estimator): y = make_forecasting_problem(random_state=random_state, **kwargs) fh = 1 return y, fh elif is_classifier(estimator): return make_classification_problem(random_state=random_state, **kwargs) elif is_regressor(estimator): return make_regression_problem(random_state=random_state, **kwargs) elif is_series_as_features_transformer(estimator): return make_classification_problem(random_state=random_state, **kwargs) elif is_single_series_transformer(estimator): y = make_forecasting_problem(random_state=random_state, **kwargs) return (y,) else: raise ValueError(f"Estimator type: {type(estimator)} not supported")