Exemple #1
0
    def process_vis(self, vis_range=(390, 720), min_scan=None,
                    max_scan=None, sigma=2.3, para_angle=45):
        data_file = self.file
        wls = self.vis_wls()
        t = data_file['t']
        d = -data_file['data_Stresing CCD'][min_scan:max_scan, ...]

        if 'rot' in data_file:
            rot = data_file['rot'][min_scan:max_scan]
            para_idx = (abs(np.round(rot) - para_angle) < 3)
        else:
            n_ir_cwl = data_file['wl_Remote IR 32x2'].shape[0]
            para_idx = np.repeat(np.array([False, True], dtype='bool'), n_ir_cwl)

        dpm = sigma_clip(d[para_idx, ...], axis=0, sigma=sigma, max_iter=10)
        dsm = sigma_clip(d[~para_idx, ...], axis=0, sigma=sigma, max_iter=10)
        dp = dpm.mean(0)
        dps = dpm.std(0)
        ds = dsm.mean(0)
        dss = dsm.std(0)

        para = TimeResSpec(wls, t, dp[0, :, 0, ...], freq_unit='nm',
                           disp_freq_unit='nm')
        perp = TimeResSpec(wls, t, ds[0, :, 0, ...], freq_unit='nm',
                           disp_freq_unit='nm')
        pol = PolTRSpec(para, perp)

        pol = pol.cut_freq(*vis_range, invert_sel=True)
        return pol.para, pol.perp, pol
Exemple #2
0
    def process_ir(self,
                   t0=0,
                   min_scans=0,
                   max_scans=None,
                   subtract_background=True,
                   center_ch=16,
                   disp=14,
                   sigma=3) -> PolTRSpec:
        data_file = self.file
        t = data_file['t'] - t0
        wli = data_file['wl_Remote IR 32x2']
        print(wli[:, 16, None])

        wli = -(disp * (np.arange(32) - center_ch)) + wli[:, 16, None]
        wli = 1e7 / wli
        d = data_file['data_Remote IR 32x2'][min_scans:max_scans]
        print(d.shape)
        dp = sigma_clip(d[1::2, ...], axis=0, sigma=sigma)
        dpm = dp.mean(0)
        ds = sigma_clip(d[0::2, ...], axis=0, sigma=sigma)
        dsm = ds.mean(0)

        if subtract_background:
            dsm -= dsm[:, :10, ...].mean(1, keepdims=True)
            dpm -= dpm[:, :10, ...].mean(1, keepdims=True)

        para = TimeResSpec(wli[0],
                           t,
                           dpm[0, :, 0, ...],
                           freq_unit='cm',
                           disp_freq_unit='cm')
        perp = TimeResSpec(wli[0],
                           t,
                           dsm[0, :, 0, ...],
                           freq_unit='cm',
                           disp_freq_unit='cm')

        para.plot.spec(1, n_average=20)

        for i in range(1, wli.shape[0]):
            para_t = TimeResSpec(wli[i],
                                 t,
                                 dpm[i, :, 0, ...],
                                 freq_unit='cm',
                                 disp_freq_unit='cm')

            para_t.plot.spec(1, n_average=20)
            para = para.concat_datasets(para_t)

            perp = perp.concat_datasets(
                TimeResSpec(wli[i],
                            t,
                            dsm[i, :, 0, ...],
                            freq_unit='cm',
                            disp_freq_unit='cm'))
        both = PolTRSpec(para, perp)
        return both
Exemple #3
0
    def bin_times(self, n, start_index=0) -> 'TimeResSpec':
        """
        Bins down the dataset by binning `n` sequential spectra together.

        Parameters
        ----------
        n : int
            How many spectra are binned together.
        start_index : int
            Determines the starting index of the binning

        Returns
        -------
        TimeResSpec
            Binned down `TimeResSpec`
        """

        out = []
        out_t = []
        m = len(self.t)
        for i in range(start_index, m, n):
            end_idx = min(i + n, m)
            out.append(
                sigma_clip(self.data[i:end_idx, :],
                           sigma=2.5,
                           max_iter=1,
                           axis=0).mean(0))
            out_t.append(self.t[i:end_idx].mean())

        new_data = np.array(out)
        new_t = np.array(out_t)
        out = self.copy()
        out.t = new_t
        out.data = new_data
        return out
Exemple #4
0
    def bin_times(self, n, start_index=0) -> "TimeResSpec":
        """
        Bins down the dataset by binning `n` sequential spectra together.

        Parameters
        ----------
        n : int
            How many spectra are binned together.
        start_index : int
            Determines the starting index of the binning

        Returns
        -------
        TimeResSpec
            Binned down `TimeResSpec`
        """

        out = []
        out_t = []
        m = len(self.t)
        for i in range(start_index, m, n):
            end_idx = min(i + n, m)
            out.append(
                sigma_clip(self.data[i:end_idx, :], sigma=2.5, max_iter=1, axis=0).mean(
                    0
                )
            )
            out_t.append(self.t[i:end_idx].mean())

        new_data = np.array(out)
        new_t = np.array(out_t)
        out = self.copy()
        out.t = new_t
        out.data = new_data
        return out
Exemple #5
0
    def average_scans(self,
                      sigma=3,
                      max_iter=3,
                      min_scan=0,
                      max_scan=None,
                      disp_freq_unit=None):
        """
        Calculate the average of the scans. Uses sigma clipping, which
        also filters nans. For polarization resolved measurements, the
        function assumes that the polarisation switches every scan.

        Parameters
        ----------
        sigma : float
            sigma used for sigma clipping.
        max_iter: int
            Maximum iterations in sigma clipping.
        min_scan : int or None
            All scans before min_scan are ignored.
        max_scan : int or None
            If `None`, use all scan, else just use the scans up to max_scan.
        disp_freq_unit : 'nm', 'cm' or None
            Sets `disp_freq_unit` of the created datasets.

        Returns
        -------
        dict or TimeResSpec
            TimeResSpec or Dict of DataSets containing the averaged datasets. If
            the first delay-time are identical, they are interpreted as
            background and their mean is subtracted.

        """
        if max_scan is None:
            sub_data = self.data
        else:
            sub_data = self.data[..., min_scan:max_scan]
        num_wls = self.data.shape[0]
        t = self.t
        if disp_freq_unit is None:
            disp_freq_unit = "nm" if self.wl.shape[0] > 32 else "cm"
        kwargs = dict(disp_freq_unit=disp_freq_unit)

        if not self.is_pol_resolved:
            data = sigma_clip(sub_data, sigma=sigma, max_iter=max_iter, axis=-1)
            mean = data.mean(-1)
            std = data.std(-1)
            err = std / np.sqrt((~data.mask).sum(-1))

            if self.valid_channel in [0, 1]:
                mean = mean[..., self.valid_channel]
                std = std[..., self.valid_channel]
                err = err[..., self.valid_channel]

                out = {}

                if num_wls > 1:
                    for i in range(num_wls):
                        ds = TimeResSpec(self.wl[:, i], t, mean[i, ..., :], err[i, ...],
                                         **kwargs)
                        out[self.pol_first_scan + str(i)] = ds
                else:
                    out = TimeResSpec(self.wl[:, 0], t, mean[0, ...], err[0, ...],
                                      **kwargs)
                return out
            else:
                raise NotImplementedError("TODO")

        elif self.is_pol_resolved and self.valid_channel in [0, 1]:
            assert self.pol_first_scan in ["para", "perp"]
            data1 = sigma_clip(sub_data[..., self.valid_channel, ::2],
                               sigma=sigma,
                               max_iter=max_iter,
                               axis=-1)
            mean1 = data1.mean(-1)
            std1 = data1.std(-1, ddof=1)
            err1 = std1 / np.sqrt(np.ma.count(data1, -1))

            data2 = sigma_clip(sub_data[..., self.valid_channel, 1::2],
                               sigma=sigma,
                               max_iter=max_iter,
                               axis=-1)
            mean2 = data2.mean(-1)
            std2 = data2.std(-1, ddof=1)
            err2 = std2 / np.sqrt(np.ma.count(data2, -1))

            out = {}
            for i in range(num_wls):
                wl, t = self.wl[:, i], self.t
                if self.pol_first_scan == "para":
                    para = mean1[i, ...]
                    para_err = err1[i, ...]
                    perp = mean2[i, ...]
                    perp_err = err2[i, ...]
                elif self.pol_first_scan == "perp":
                    para = mean2[i, ...]
                    para_err = err2[i, ...]
                    perp = mean1[i, ...]
                    perp_err = err1[i, ...]

                para_ds = TimeResSpec(wl, t, para, para_err, **kwargs)
                perp_ds = TimeResSpec(wl, t, perp, perp_err, **kwargs)
                out["para" + str(i)] = para_ds
                out["perp" + str(i)] = perp_ds
                iso = 1/3*para + 2/3*perp
                out["iso" + str(i)] = TimeResSpec(wl, t, iso, **kwargs)
            self.av_scans_ = out
            return out
        else:
            raise NotImplementedError("Iso correction not supported yet.")
Exemple #6
0
    def average_scans(self, sigma=3, max_scan=None, disp_freq_unit=None):
        """
        Calculate the average of the scans. Uses sigma clipping, which
        also filters nans. For polarization resolved measurements, the
        function assumes that the polarisation switches every scan.

        Parameters
        ----------
        sigma : float
            sigma used for sigma clipping.
        max_scan : int or None
            If `None`, use all scan, else just use the scans up to max_scan.
        disp_freq_unit : 'nm', 'cm' or None
            Sets `disp_freq_unit` of the created datasets.

        Returns
        -------
        dict or TimeResSpec
            TimeResSpec or Dict of DataSets containing the averaged datasets. If
            the first delay-time are identical, they are interpreted as
            background and their mean is subtracted.

        """
        if max_scan is None:
            sub_data = self.data
        else:
            sub_data = self.data[..., :max_scan]
        num_wls = self.data.shape[0]
        t = self.t
        if disp_freq_unit is None:
            disp_freq_unit = 'nm' if self.wl.shape[0] > 32 else 'cm'
        kwargs = dict(disp_freq_unit=disp_freq_unit)

        if not self.is_pol_resolved:
            data = sigma_clip(sub_data,   sigma=sigma, axis=-1)
            mean = data.mean(-1)
            std = data.std(-1)
            err = std / np.sqrt((~data.mask).sum(-1))

            if self.valid_channel in [0, 1]:
                mean = mean[..., self.valid_channel]
                std = std[..., self.valid_channel]
                err = err[..., self.valid_channel]

                out = {}

                if num_wls > 1:
                    for i in range(num_wls):
                        ds = TimeResSpec(self.wl[:, i], t, mean[i, ..., :],
                                         err[i, ...], **kwargs)
                        out[self.pol_first_scan + str(i)] = ds
                else:
                    out = TimeResSpec(self.wl[:, 0], t, mean[0, ...],
                                      err[0, ...], **kwargs)
                return out
            else:
                raise NotImplementedError('TODO')

        elif self.is_pol_resolved and self.valid_channel in [0, 1]:
            assert (self.pol_first_scan in ['para', 'perp'])
            data1 = sigma_clip(sub_data[..., self.valid_channel, ::2],
                                     sigma=sigma, axis=-1)
            mean1 = data1.mean(-1)
            std1 = np.ma.std(-1)
            err1 = std1 / np.sqrt(np.ma.count(data1, -1))

            data2 = sigma_clip(sub_data[..., self.valid_channel, 1::2],
                                     sigma=sigma, axis=-1)
            mean2 = data2.mean(-1)
            std2 = data2.std(-1)

            err2 = std2 / np.sqrt(np.ma.count(data2, -1))


            out = {}
            for i in range(num_wls):
                wl, t = self.wl[:, i], self.t
                if self.pol_first_scan == 'para':
                    para = mean1[i, ...]
                    para_err = err1[i, ...]
                    perp = mean2[i, ...]
                    perp_err = err2[i, ...]
                elif self.pol_first_scan == 'perp':
                    para = mean2[i, ...]
                    para_err = err2[i, ...]
                    perp = mean1[i, ...]
                    perp_err = err1[i, ...]

                para_ds = TimeResSpec(wl, t, para, para_err, **kwargs)
                perp_ds = TimeResSpec(wl, t, perp, perp_err, **kwargs)
                out['para' + str(i)] = para_ds
                out['perp' + str(i)] = perp_ds
                iso = 1/3 * para + 2 / 3 * perp
                out['iso' + str(i)] = TimeResSpec(wl, t, iso, **kwargs)
            self.av_scans_ = out
            return out
        else:
            raise NotImplementedError("Iso correction not supported yet.")