Exemple #1
0
    def test_draw_hires(self):
        """ Draw a partial healpix map with very large nside """
        nside = 4096 * 2**5
        ra, dec = 45, -45
        radius = 0.05
        pixels = skymap.healpix.ang2disc(nside, ra, dec, radius)
        values = pixels

        plt.figure()
        # Use the Cassini projection (because we can)
        m = Skymap(projection='cass',
                   lon_0=ra,
                   lat_0=dec,
                   celestial=False,
                   llcrnrlon=ra + 2 * radius,
                   urcrnrlon=ra - 2 * radius,
                   llcrnrlat=dec - 2 * radius,
                   urcrnrlat=dec + 2 * radius)

        m.draw_hpxmap(values, pixels, nside=nside, xsize=400)
        m.draw_parallels(np.linspace(dec - 2 * radius, dec + 2 * radius, 5),
                         labelstyle='+/-',
                         labels=[1, 0, 0, 0])
        m.draw_meridians(np.linspace(ra - 2 * radius, ra + 2 * radius, 5),
                         labelstyle='+/-',
                         labels=[0, 0, 0, 1])
        plt.title('HEALPix Zoom (nside=%i)' % nside)
Exemple #2
0
                 overwrite=True,
                 nest=True,
                 fits_IDL=False,
                 partial=True)

    #Make plot of the healpix map
    upix, uval = [], []
    for jj, vv in enumerate(hp_aux):
        if vv != hp.UNSEEN:
            upix.append(jj)
            uval.append(vv)

    upix = np.array(upix)
    uval = np.array(uval)

    k = hp.nest2ring(4096, upix)

    m = Skymap(projection='cass',
               lon_0=67.,
               lat_0=-60.,
               celestial=False,
               llcrnrlon=56.68,
               urcrnrlon=77.46,
               llcrnrlat=-64.2,
               urcrnrlat=-55.40,
               parallels=False,
               meridians=False)

    m.draw_hpxmap(uval, k, nside=4096, xsize=1000)
    plt.savefig('healpix_imageLow.png')
Exemple #3
0
paint = np.array(paint)
pix = np.array(pix)

m = Skymap(projection='cass',
           lon_0=67.,
           lat_0=-60.,
           celestial=False,
           llcrnrlon=56.68,
           urcrnrlon=77.46,
           llcrnrlat=-64.2,
           urcrnrlat=-55.40,
           parallels=False,
           meridians=False)

da = m.draw_hpxmap(paint, pix, nside=512, xsize=1000)

plt.colorbar()
plt.savefig('healpix_dra.png')
plt.close()

paintRA = paint.copy()

#New Dra

pix = []
paint = []
for j, val in enumerate(draN):
    if val != hp.UNSEEN:
        pix.append(j)
        paint.append(val)
Exemple #4
0
def main(survey, plot=True, write=True):
    print("Creating mask with NSIDE={} and NEST={}...".format(NSIDE, NEST))

    # Initiate_mask
    if args.load is not None:
        healpix_mask = ugali.utils.healpix.read_map(args.load, nest=NEST)
    else:
        healpix_mask = np.tile(0, hp.nside2npix(NSIDE))

    infile_dust = 'ebv_sfd98_fullres_nside_4096_nest_equatorial.fits.gz'
    ebv_map = ugali.utils.healpix.read_map(infile_dust, nest=True)

    cut_ebv = (ebv_map > 0.2)
    healpix_mask[cut_ebv] |= 0b00001
    """
    McConnachie15: Half-light radius along major axis. Could incorporate ellipticity info
    Harris96: Half-light radius
    Corwen04: No radius data
    Nilson73: Major axis (no ellipticity info)
    Webbink85: 10**log(radius)
    Kharchenko13: Radius of the central part
    Bica08: Major axis. Could incorporate ellipticity info
    WEBDA: Diameter/2
    ExtraDwarfs: Half-light radius
    ExtraClusters: Half-light radius

    Vizier data on: Nilson73, Webbink85 (should check log or ln), Kharchenko13 (3 radii, used middle), Bica08
    ugali data on: McConnachi15, Harris96, WEBDA14
    """
    external_cat_list = [
        'Harris96', 'Corwen04', 'Nilson73', 'Webbink85', 'Kharchenko13',
        'Bica08', 'WEBDA14', 'ExtraClusters', 'ExtraStructures'
    ]
    for external_cat in external_cat_list:
        if args.mode == 1:
            catalog = ugali.candidate.associate.catalogFactory(external_cat)
            external_cut = cut_circles(catalog['ra'],
                                       catalog['dec'],
                                       default_radius=0.1)
        elif args.mode == 2:
            catalog = associate.catalogFactory(external_cat)
            external_cut = cut_circles(catalog['ra'],
                                       catalog['dec'],
                                       catalog['radius'],
                                       default_radius=0.1)
        healpix_mask[external_cut] |= 0b00010

    known_dwarfs = ['McConnachie15', 'ExtraDwarfs']
    for external_cat in known_dwarfs:
        if args.mode == 1:
            catalog = ugali.candidate.associate.catalogFactory(external_cat)
            external_cut = cut_circles(catalog['ra'],
                                       catalog['dec'],
                                       default_radius=0.1)
        elif args.mode == 2:
            catalog = associate.catalogFactory(external_cat)
            external_cut = cut_circles(catalog['ra'],
                                       catalog['dec'],
                                       catalog['radius'],
                                       default_radius=0.1)
        healpix_mask[external_cut] |= 0b00100

    reader_bsc = pyfits.open('bsc5.fits')
    d_bsc = reader_bsc[1].data

    bsc_cut = cut_circles(d_bsc['RA'], d_bsc['DEC'], default_radius=0.1)
    healpix_mask[bsc_cut] |= 0b01000

    if 'des' == survey:
        des_footprint = ugali.utils.healpix.read_map(
            'y3a2_footprint_griz_1exp_v2.0.fits.gz', nest=True)
        #print('Masking footprint...')
        #npix = hp.nside2npix(NSIDE)
        #nbad = 3
        #des_cut = np.fromiter( (des_footprint[i] < 1 or sum(des_footprint[hp.get_all_neighbours(NSIDE, i)] < 1) >= nbad for i in range(npix)), dtype=bool, count=npix ) # Mask if at least nbad neighbors outside the footprint
        des_cut = des_footprint < 1
        healpix_mask[des_cut] |= 0b10000

    if 'ps1' == survey:
        ps1_cut = hp.query_strip(
            NSIDE,
            np.radians(90.0 - -25.0),
            np.radians(90.0 - -90.0),
            nest=False
        )  # This function apparently isn't implemented for nest=True
        ps1_cut = hp.ring2nest(NSIDE, ps1_cut)
        healpix_mask[ps1_cut] |= 0b10000

        #failures = pyfits.open('ugali_failures.fits')[1].data # NSIDE = 256
        #fail_pix_256 = [ugali.utils.healpix.angToPix(256, fail['ra'], fail['dec'], nest=NEST) for fail in failures]
        #fail_pix = ugali.utils.healpix.ud_grade_ipix(fail_pix_256, 256, NSIDE, nest=NEST)
        #healpix_mask[fail_pix] |= 0b100000

        # Artifact masks
        artifact_coords = np.array([
            (278.70, 38.67),  # J1834.8+3840, obvious masking issue
            (35.01, -3.04),  # J0220.1-0302, psf failures
            (201.59, -11.47),  # J1326.4-1128, obvious masking issue
            (214.52, 19.20),  # J1418.1+1912, obvious masking issue
            #(131.50, 28.57), # J0846.0+2834, ???
            (262.66, 52.11),  # J1730.7+5206, likely artifact
            #(169.99, -14.96), # J1120.0-1457, ???
            (186.55, 46.17),  # J1226.2+4609, likely artifact
            (145.22, -13.74),  # J0940.9-1344, likely artifact
            (28.11, 19.39),  # J0152.5+1923, no uglai source?
            #(247.73, -0.97), # J1630.9+0058, real star cluster
            (19.40, -17.44)
        ])  # J0117.6-1726, Cetus II
        #(39.88, 0.18)]) # J0239.5+0010,
        artifact_ras, artifact_decs = artifact_coords.T
        artifact_cut = cut_circles(artifact_ras,
                                   artifact_decs,
                                   default_radius=0.1)
        healpix_mask[artifact_cut] |= 0b1000000

    if plot:
        print("Simplifying mask for plotting...")
        simplified_mask = np.copy(healpix_mask)
        cut_catalog = np.where((simplified_mask & 0b00010)
                               | (simplified_mask & 0b00100)
                               | (simplified_mask & 0b01000))
        cut_ebv = np.where(simplified_mask & 0b00001)
        cut_footprint = np.where((simplified_mask & 0b10000)
                                 | (simplified_mask & 0b100000)
                                 | (simplified_mask & 0b1000000))
        simplified_mask[cut_catalog] = 1
        simplified_mask[cut_ebv] = 2
        simplified_mask[cut_footprint] = 3

        print("Plotting...")
        title = ''
        if survey == 'des':
            title = 'DES ' + title
        elif survey == 'ps1':
            title = 'Pan-STARRS ' + title
        """
        # Using mollview
        hp.mollview(simplified_mask, nest=True, coord='C', cmap=new_cmap, title=title, xsize=1600)
        ax = plt.gca()
        cbar = ax.images[-1].colorbar
        cbar.set_ticks( (np.arange(n) + 0.5)*(n-1)/n )
        cbar.set_ticklabels(['Unmasked', 'Association', r'$E(B-V)$', 'Footprint'])
        hp.graticule()
        plt.savefig('healpix_mask_{}_v{}.png'.format(survey, version), bbox_inches='tight')
        """

        # Using skymap
        simplified_mask_ring = hp.reorder(simplified_mask, n2r=True)
        fig, ax = plt.subplots(figsize=(12, 8))
        smap = Skymap(projection='mbtfpq', lon_0=0)
        im, lon, lat, values = smap.draw_hpxmap(simplified_mask_ring,
                                                xsize=1600,
                                                cmap=new_cmap)
        cbar = plt.colorbar(ticks=(np.arange(n) + 0.5) * (n - 1) / n,
                            fraction=0.02)
        cbar.set_ticklabels(
            ['Unmasked', 'Association', r'$E(B-V) > 0.2$', 'Footprint'])
        plt.title(title)
        plt.savefig('healpix_mask_{}_v{}.png'.format(survey, version),
                    bbox_inches='tight')

    if write:
        print('Writing mask to healpix_mask_{}_v{}.fits.gz ...'.format(
            survey, version))
        hp.write_map('healpix_mask_{}_v{}.fits.gz'.format(survey, version),
                     healpix_mask,
                     dtype=np.int32,
                     nest=NEST,
                     coord='C',
                     overwrite=True)

    return healpix_mask, simplified_mask_ring
Exemple #5
0
    if args.survey is None:

        des_mask, des_mask_simplified = main('des',
                                             plot=(not args.no_plot),
                                             write=(not args.no_write))
        ps1_mask, ps1_mask_simplified = main('ps1',
                                             plot=(not args.no_plot),
                                             write=(not args.no_write))

        # Put the two healpix masks on the same plot
        fig, axes = plt.subplots(nrows=2, ncols=1, figsize=(12, 10))
        plt.sca(axes[0])
        smap = Skymap(projection='mbtfpq', lon_0=0)
        im, lon, lat, values = smap.draw_hpxmap(des_mask_simplified,
                                                xsize=1600,
                                                cmap=new_cmap)
        plt.title('DES', fontsize='large')
        plt.sca(axes[1])
        smap = Skymap(projection='mbtfpq', lon_0=0)
        im, lon, lat, values = smap.draw_hpxmap(ps1_mask_simplified,
                                                xsize=1600,
                                                cmap=new_cmap)
        plt.title('Pan-STARRS', fontsize='large')
        fig.subplots_adjust(right=0.8)
        cbar_ax = fig.add_axes([0.85, 0.175, 0.020, 0.65])
        cbar = fig.colorbar(im,
                            cax=cbar_ax,
                            ticks=(np.arange(n) + 0.5) * (n - 1) / n)
        cbar.set_ticklabels(
            ['Unmasked', 'Association', r'$E(B-V) > 0.2$', 'Footprint'])