Exemple #1
0
 def __init__(self, dataSeries, period, numStdDev, maxLen=None):
     self.__sma = ma.SMA(dataSeries, period, maxLen=maxLen)
     self.__stdDev = stats.StdDev(dataSeries, period, maxLen=maxLen)
     self.__upperBand = dataseries.SequenceDataSeries(maxLen)
     self.__lowerBand = dataseries.SequenceDataSeries(maxLen)
     self.__numStdDev = numStdDev
     # It is important to subscribe after sma and stddev since we'll use those values.
     dataSeries.getNewValueEvent().subscribe(self.__onNewValue)
Exemple #2
0
 def __init__(self, maxLen=None):
     super(analyzer_skysense, self).__init__()
     self.__netReturns = dataseries.SequenceDataSeries(maxLen=maxLen)
     self.__cumReturns = dataseries.SequenceDataSeries(maxLen=maxLen)
     self.__benchmarkDailyReturns = dataseries.SequenceDataSeries(
         maxLen=maxLen)
     self.__benchmarkCumuReturns = dataseries.SequenceDataSeries(
         maxLen=maxLen)
     self.__benchmarkList = []
     self.__dailyPeriodAnalysis = {
         'Date': [],
         'profit': [],
         'profitratio': []
     }
     self.__presentEquity = None
     self.__lastEquity = None
     self.__presentBenchmark = None
     self.__lastBenchmark = None
     self.__strat = None
     self.__totalSlippage = 0
     self.__momentPrice = 0
     self.__actionList = ["BUY", "BUY_TO_COVER", "SELL", "SELL_SHORT"]
     self.__tradesListDict = {
         'type': [],
         'date': [],
         'price': [],
         'shares': [],
         'return': [],
         'returnrate': [],
         'instrument': [],
         'position': [],
         'cost': [],
         'datetime': []
     }
     self.__long = 0
     self.__short = 0
     self.__countTrades = 0
     self.__positionsList = []
     self.__dateTimeList = []
     self.__equityList = []
     self.__cashList = []
     self.__barsList = []
     self.__buyPricesList = []
     self.__buySharesList = []
     self.__sellShortPricesList = []
     self.__sellShortSharesList = []
     self.__holdingCostList = []
     self.__buyPricesDict = {}
     self.__buySharesDict = {}
     self.__sellShortPricesDict = {}
     self.__sellShortSharesDict = {}
     self.__positionsListByOrder = [{}]
     self.__orderDatetimeList = []
Exemple #3
0
def datetime_aligned(ds1, ds2, maxLen=None):
    """
    Returns two dataseries that exhibit only those values whose datetimes are in both dataseries.

    :param ds1: A DataSeries instance.
    :type ds1: :class:`DataSeries`.
    :param ds2: A DataSeries instance.
    :type ds2: :class:`DataSeries`.
    :param maxLen: The maximum number of values to hold for the returned :class:`DataSeries`.
        Once a bounded length is full, when new items are added, a corresponding number of items are discarded from the
        opposite end. If None then dataseries.DEFAULT_MAX_LEN is used.
    :type maxLen: int.
    """
    aligned1 = dataseries.SequenceDataSeries(maxLen)
    aligned2 = dataseries.SequenceDataSeries(maxLen)
    Syncer(ds1, ds2, aligned1, aligned2)
    return (aligned1, aligned2)
Exemple #4
0
 def getBenchmarkCumuReturns(self):
     cumuReturns = dataseries.SequenceDataSeries(maxLen=None)
     dateList = self.getDateTimeList()
     benchmarkList = self.getBenchmarkList()
     assert len(dateList) == len(benchmarkList)
     for i in range(0, len(benchmarkList)):
         cumuReturns.appendWithDateTime(dateTime=dateList[i],
                                        value=(benchmarkList[i] - benchmarkList[0]) / benchmarkList[0])
     return cumuReturns
Exemple #5
0
    def __init__(self, dataSeries, fastEMA, slowEMA, signalEMA, maxLen=None):
        assert (fastEMA > 0)
        assert (slowEMA > 0)
        assert (fastEMA < slowEMA)
        assert (signalEMA > 0)

        super(MACD, self).__init__(maxLen)

        # We need to skip some values when calculating the fast EMA in order for both EMA
        # to calculate their first values at the same time.
        # I'M FORCING THIS BEHAVIOUR ONLY TO MAKE THIS FITLER MATCH TA-Lib MACD VALUES.
        self.__fastEMASkip = slowEMA - fastEMA

        self.__fastEMAWindow = ma.EMAEventWindow(fastEMA)
        self.__slowEMAWindow = ma.EMAEventWindow(slowEMA)
        self.__signalEMAWindow = ma.EMAEventWindow(signalEMA)
        self.__signal = dataseries.SequenceDataSeries(maxLen)
        self.__histogram = dataseries.SequenceDataSeries(maxLen)
        dataSeries.getNewValueEvent().subscribe(self.__onNewValue)
Exemple #6
0
 def __init__(self, maxLen=None):
     super(BarDataSeries, self).__init__(maxLen)
     self.__openDS = dataseries.SequenceDataSeries(maxLen)
     self.__closeDS = dataseries.SequenceDataSeries(maxLen)
     self.__highDS = dataseries.SequenceDataSeries(maxLen)
     self.__lowDS = dataseries.SequenceDataSeries(maxLen)
     self.__volumeDS = dataseries.SequenceDataSeries(maxLen)
     self.__adjCloseDS = dataseries.SequenceDataSeries(maxLen)
     self.__extraDS = {}
     self.__useAdjustedValues = False
Exemple #7
0
 def __getOrCreateExtraDS(self, name):
     ret = self.__extraDS.get(name)
     if ret is None:
         ret = dataseries.SequenceDataSeries(self.getMaxLen())
         self.__extraDS[name] = ret
     return ret
Exemple #8
0
 def __init__(self, maxLen=None):
     super(Returns, self).__init__()
     self.__netReturns = dataseries.SequenceDataSeries(maxLen=maxLen)
     self.__cumReturns = dataseries.SequenceDataSeries(maxLen=maxLen)
Exemple #9
0
 def createDataSeries(self, key, maxLen):
     return dataseries.SequenceDataSeries(maxLen)