#============================================ # create SLAM object #============================================ slam = Slam(cam, feature_tracker) #, grountruth) timer = Timer() #============================================ # N.B.: keep this coherent with the above forced camera settings img_ref = cv2.imread('../data/kitti06-12.png', cv2.IMREAD_COLOR) #img_cur = cv2.imread('../data/kitti06-12-01.png',cv2.IMREAD_COLOR) img_cur = cv2.imread('../data/kitti06-13.png', cv2.IMREAD_COLOR) slam.track(img_ref, frame_id=0) slam.track(img_cur, frame_id=1) f_ref = slam.map.get_frame(-2) f_cur = slam.map.get_frame(-1) print('search for triangulation...') timer.start() idxs_ref, idxs_cur, num_found_matches, img_cur_epi = search_frame_for_triangulation_test( f_ref, f_cur, img_cur, img1=img_ref) # test #idxs_ref, idxs_cur, num_found_matches, img_cur_epi = search_frame_for_triangulation(f_ref, f_cur) elapsed = timer.elapsed() print('time:', elapsed) print('# found matches:', num_found_matches)
while dataset.isOk(): if not is_paused: print('..................................') print('image: ', img_id) img = dataset.getImageColor(img_id) if img is None: print('image is empty') getchar() timestamp = dataset.getTimestamp() # get current timestamp next_timestamp = dataset.getNextTimestamp() # get next timestamp frame_duration = next_timestamp - timestamp if img is not None: time_start = time.time() slam.track(img, img_id, timestamp) # main SLAM function # 3D display (map display) if viewer3D is not None: viewer3D.draw_map(slam) img_draw = slam.map.draw_feature_trails(img) # 2D display (image display) if display2d is not None: display2d.draw(img_draw) else: cv2.imshow('Camera', img_draw) if matched_points_plt is not None: if slam.tracking.num_matched_kps is not None: