Exemple #1
0
    def read(cls, file: FileHandle, *args, **kwargs,) -> Labels:
        filename = file.filename

        # Load data from the YAML file
        project_data = yaml.load(file.text, Loader=yaml.SafeLoader)

        # Create skeleton which we'll use for each video
        skeleton = Skeleton()
        skeleton.add_nodes(project_data["bodyparts"])

        # Get subdirectories of videos and labeled data
        root_dir = os.path.dirname(filename)
        videos_dir = os.path.join(root_dir, "videos")
        labeled_data_dir = os.path.join(root_dir, "labeled-data")

        with os.scandir(labeled_data_dir) as file_iterator:
            data_subdirs = [file.path for file in file_iterator if file.is_dir()]

        labeled_frames = []

        # Each subdirectory of labeled data corresponds to a video.
        # We'll go through each and import the labeled frames.

        for data_subdir in data_subdirs:
            csv_files = find_files_by_suffix(
                data_subdir, prefix="CollectedData", suffix=".csv"
            )

            if csv_files:
                csv_path = csv_files[0]

                # Try to find a full video corresponding to this subdir.
                # If subdirectory is foo, we look for foo.mp4 in videos dir.

                shortname = os.path.split(data_subdir)[-1]
                video_path = os.path.join(videos_dir, f"{shortname}.mp4")

                if os.path.exists(video_path):
                    video = Video.from_filename(video_path)
                else:
                    # When no video is found, the individual frame images
                    # stored in the labeled data subdir will be used.
                    print(
                        f"Unable to find {video_path} so using individual frame images."
                    )
                    video = None

                # Import the labeled fraems
                labeled_frames.extend(
                    LabelsDeepLabCutCsvAdaptor.read_frames(
                        FileHandle(csv_path), full_video=video, skeleton=skeleton
                    )
                )

            else:
                print(f"No csv data file found in {data_subdir}")

        return Labels(labeled_frames=labeled_frames)
Exemple #2
0
def demo_receptive_field():
    app = QtWidgets.QApplication([])

    video = Video.from_filename("tests/data/videos/centered_pair_small.mp4")

    win = ReceptiveFieldImageWidget()
    win.setImage(video.get_frame(0))
    win._set_field_size(50)

    win.show()
    app.exec_()
Exemple #3
0
    def read(
        cls,
        file: FileHandle,
        video_path: str,
        skeleton_path: str,
        *args,
        **kwargs,
    ) -> Labels:
        f = file.file

        video = Video.from_filename(video_path)
        skeleton_data = pd.read_csv(skeleton_path, header=0)

        skeleton = Skeleton()
        skeleton.add_nodes(skeleton_data["name"])
        nodes = skeleton.nodes

        for name, parent, swap in skeleton_data.itertuples(index=False,
                                                           name=None):
            if parent is not np.nan:
                skeleton.add_edge(parent, name)

        lfs = []

        pose_matrix = f["pose"][:]

        track_count, frame_count, node_count, _ = pose_matrix.shape

        tracks = [Track(0, f"Track {i}") for i in range(track_count)]
        for frame_idx in range(frame_count):
            lf_instances = []
            for track_idx in range(track_count):
                points_array = pose_matrix[track_idx, frame_idx, :, :]
                points = dict()
                for p in range(len(points_array)):
                    x, y, score = points_array[p]
                    points[nodes[p]] = Point(x, y)  # TODO: score

                inst = Instance(skeleton=skeleton,
                                track=tracks[track_idx],
                                points=points)
                lf_instances.append(inst)
            lfs.append(
                LabeledFrame(video,
                             frame_idx=frame_idx,
                             instances=lf_instances))

        return Labels(labeled_frames=lfs)
Exemple #4
0
    def read(
        cls,
        file: FileHandle,
        video: Union[Video, str],
        *args,
        **kwargs,
    ) -> Labels:
        connect_adj_nodes = False

        if video is None:
            raise ValueError(
                "Cannot read analysis hdf5 if no video specified.")

        if not isinstance(video, Video):
            video = Video.from_filename(video)

        f = file.file
        tracks_matrix = f["tracks"][:].T
        track_names_list = f["track_names"][:].T
        node_names_list = f["node_names"][:].T

        # shape: frames * nodes * 2 * tracks
        frame_count, node_count, _, track_count = tracks_matrix.shape

        tracks = [
            Track(0, track_name.decode()) for track_name in track_names_list
        ]

        skeleton = Skeleton()
        last_node_name = None
        for node_name in node_names_list:
            node_name = node_name.decode()
            skeleton.add_node(node_name)
            if connect_adj_nodes and last_node_name:
                skeleton.add_edge(last_node_name, node_name)
            last_node_name = node_name

        frames = []
        for frame_idx in range(frame_count):
            instances = []
            for track_idx in range(track_count):
                points = tracks_matrix[frame_idx, ..., track_idx]
                if not np.all(np.isnan(points)):
                    point_scores = np.ones(len(points))
                    # make everything a PredictedInstance since the usual use
                    # case is to export predictions for analysis
                    instances.append(
                        PredictedInstance.from_arrays(
                            points=points,
                            point_confidences=point_scores,
                            skeleton=skeleton,
                            track=tracks[track_idx],
                            instance_score=1,
                        ))
            if instances:
                frames.append(
                    LabeledFrame(video=video,
                                 frame_idx=frame_idx,
                                 instances=instances))

        return Labels(labeled_frames=frames)