Exemple #1
0
    def model(this, inputs, is_training):
        '''
        define the model, we use slim's implemention of resnet
        '''
        with tf.variable_scope(this.vscope):
            base_network = nets_factory.get_network_fn(
                this.network_name,
                num_classes=2,
                weight_decay=this.weight_decay,
                is_training=is_training)
            logits, end_points = base_network(inputs[0])
            f = [
                end_points['pool5'], end_points['pool4'], end_points['pool3'],
                end_points['pool2']
            ]
            values = None
            #end_points.value;

            # with slim.arg_scope(resnet_v1.resnet_arg_scope(weight_decay=weight_decay)):
            #    logits, end_points = resnet_v1.resnet_v1_50(images, is_training=is_training, scope='resnet_v1_50')
            g = welf_slime_unpool().model(f,
                                          is_training,
                                          values=values,
                                          weight_decay=this.weight_decay)
            return welf_slime_east_parser().model(
                g,
                is_training,
                values=values,
                weight_decay=this.weight_decay,
                text_scale=this.text_scale)
Exemple #2
0
 def testGetNetworkFnSecondHalf(self):
     batch_size = 5
     num_classes = 1000
     for net in nets_factory.networks_map.keys()[10:]:
         with tf.Graph().as_default() as g, self.test_session(g):
             net_fn = nets_factory.get_network_fn(net, num_classes)
             # Most networks use 224 as their default_image_size
             image_size = getattr(net_fn, 'default_image_size', 224)
             inputs = tf.random_uniform(
                 (batch_size, image_size, image_size, 3))
             logits, end_points = net_fn(inputs)
             self.assertTrue(isinstance(logits, tf.Tensor))
             self.assertTrue(isinstance(end_points, dict))
             self.assertEqual(logits.get_shape().as_list()[0], batch_size)
             self.assertEqual(logits.get_shape().as_list()[-1], num_classes)