Exemple #1
0
    def setup(self):
        self.num_pix = 25  # cutout pixel size
        self.subgrid_res_source = 2
        delta_pix = 0.32
        _, _, ra_at_xy_0, dec_at_xy_0, _, _, Mpix2coord, _ \
            = l_util.make_grid_with_coordtransform(numPix=self.num_pix, deltapix=delta_pix, subgrid_res=1,
                                                         inverse=False, left_lower=False)
        kwargs_data = {
            'ra_at_xy_0': ra_at_xy_0,
            'dec_at_xy_0': dec_at_xy_0,
            'transform_pix2angle': Mpix2coord,
            'image_data': np.zeros((self.num_pix, self.num_pix))
        }

        data_class = ImageData(**kwargs_data)
        numerics_image = NumericsSubFrame(data_class, PSF('NONE'))
        numerics_source = NumericsSubFrame(
            data_class,
            PSF('NONE'),
            supersampling_factor=self.subgrid_res_source)
        self.source_plane = SizeablePlaneGrid(numerics_source.grid_class,
                                              verbose=True)

        # create a mask mimicking the real case of lensing operation
        lens_model_class = LensModel(['SIE'])
        kwargs_lens = [{
            'theta_E': 1.5,
            'center_x': 0,
            'center_y': 0,
            'e1': 0.1,
            'e2': 0.1
        }]
        lensing_op = LensingOperator(lens_model_class,
                                     numerics_image.grid_class,
                                     numerics_source.grid_class, self.num_pix,
                                     self.subgrid_res_source)
        lensing_op.update_mapping(kwargs_lens)
        unit_image = np.ones((self.num_pix, self.num_pix))
        mask_image = np.zeros((self.num_pix, self.num_pix))
        mask_image[2:-2, 2:-2] = 1  # some binary image that mask out borders
        self.unit_image_mapped = lensing_op.image2source_2d(unit_image,
                                                            no_flux_norm=False)
        self.mask_mapped = lensing_op.image2source_2d(mask_image)
    def test_image2source(self):
        lensing_op = LensingOperator(self.lens_model, self.image_grid_class,
                                     self.source_grid_class_default,
                                     self.num_pix)
        image_1d = util.image2array(self.source_light_lensed)
        image_1d_delensed = lensing_op.image2source(
            image_1d, kwargs_lens=self.kwargs_lens)
        assert len(image_1d_delensed.shape) == 1

        image_2d = self.source_light_lensed
        image_2d_delensed = lensing_op.image2source_2d(
            image_2d, kwargs_lens=self.kwargs_lens, update_mapping=True)
        assert len(image_2d_delensed.shape) == 2
Exemple #3
0
class TestModelOperators(object):
    """
    tests the Lensing Operator classes
    """
    def setup(self):
        self.num_pix = 49  # cutout pixel size
        self.subgrid_res_source = 2
        self.num_pix_source = self.num_pix * self.subgrid_res_source

        delta_pix = 0.24
        _, _, ra_at_xy_0, dec_at_xy_0, _, _, Mpix2coord, _ \
            = l_util.make_grid_with_coordtransform(numPix=self.num_pix, deltapix=delta_pix, subgrid_res=1,
                                                         inverse=False, left_lower=False)

        self.image_data = np.random.rand(self.num_pix, self.num_pix)
        kwargs_data = {
            'ra_at_xy_0': ra_at_xy_0,
            'dec_at_xy_0': dec_at_xy_0,
            'transform_pix2angle': Mpix2coord,
            'image_data': self.image_data,
        }
        data = ImageData(**kwargs_data)

        lens_model = LensModel(['SPEP'])
        kwargs_lens = [{
            'theta_E': 1,
            'gamma': 2,
            'center_x': 0,
            'center_y': 0,
            'e1': -0.05,
            'e2': 0.05
        }]

        # PSF
        kernel_pixel = np.zeros((self.num_pix, self.num_pix))
        kernel_pixel[int(self.num_pix / 2),
                     int(self.num_pix / 2)] = 1  # just a dirac here
        kwargs_psf = {'psf_type': 'PIXEL', 'kernel_point_source': kernel_pixel}
        psf = PSF(**kwargs_psf)

        # wavelets scales for lens and source
        self.n_scales_source = 4
        self.n_scales_lens = 3

        # list of source light profiles
        source_model = LightModel(['SLIT_STARLETS'])
        self.kwargs_source = [{'n_scales': self.n_scales_source}]

        # list of lens light profiles
        lens_light_model = LightModel(['SLIT_STARLETS'])
        self.kwargs_lens_light = [{'n_scales': self.n_scales_lens}]

        # define some mask
        likelihood_mask = np.ones((self.num_pix, self.num_pix))

        # get grid classes
        self.numerics = NumericsSubFrame(data, psf)
        image_grid_class = self.numerics.grid_class
        source_numerics = NumericsSubFrame(
            data, psf, supersampling_factor=self.subgrid_res_source)
        source_grid_class = source_numerics.grid_class

        # get a lensing operator
        self.lensing_op = LensingOperator(lens_model, image_grid_class,
                                          source_grid_class, self.num_pix)
        self.lensing_op.update_mapping(kwargs_lens)

        self.model_op = ModelOperators(data, self.lensing_op, self.numerics)
        self.model_op._set_likelihood_mask(likelihood_mask)
        self.model_op.add_source_light(source_model)
        self.model_op.add_lens_light(lens_light_model)
        self.model_op_nolens = ModelOperators(data, self.lensing_op,
                                              self.numerics)
        self.model_op_nolens._set_likelihood_mask(likelihood_mask)
        self.model_op_nolens.add_source_light(source_model)

        # define some test images in direct space
        self.X_s = np.random.rand(self.num_pix_source,
                                  self.num_pix_source)  # source light
        self.X_l = np.random.rand(self.num_pix, self.num_pix)  # lens light

        # define some test images in wavelets space
        self.alpha_s = np.random.rand(self.n_scales_source,
                                      self.num_pix_source,
                                      self.num_pix_source)  # source light
        self.alpha_l = np.random.rand(self.n_scales_lens, self.num_pix,
                                      self.num_pix)  # lens light

    def test_set_wavelet_scales(self):
        self.model_op.set_source_wavelet_scales(self.n_scales_source)
        Phi_T_s_X = self.model_op.Phi_T_s(self.X_s)
        self.model_op.set_lens_wavelet_scales(self.n_scales_lens)
        Phi_T_l_X = self.model_op.Phi_T_l(self.X_l)
        # test that transformed image has the right shape in terms of number of scales
        assert Phi_T_s_X.shape[0] == self.n_scales_source
        assert Phi_T_l_X.shape[0] == self.n_scales_lens

    def test_subtract_from_data_and_reset(self):
        image_to_subtract = np.eye(self.num_pix, self.num_pix)
        self.model_op.subtract_from_data(image_to_subtract)
        npt.assert_equal(self.model_op.Y, self.image_data)
        npt.assert_equal(self.model_op.Y_eff,
                         self.image_data - image_to_subtract)
        self.model_op.reset_data()
        npt.assert_equal(self.model_op.Y, self.image_data)
        npt.assert_equal(self.model_op.Y_eff, self.image_data)

    def test_spectral_norm_source(self):
        self.model_op.set_source_wavelet_scales(self.n_scales_source)
        npt.assert_almost_equal(self.model_op.spectral_norm_source,
                                0.97,
                                decimal=2)

    def test_spectral_norm_lens(self):
        self.model_op.set_lens_wavelet_scales(self.n_scales_lens)
        npt.assert_almost_equal(self.model_op.spectral_norm_lens,
                                0.99,
                                decimal=2)

    def test_data_terms(self):
        npt.assert_equal(self.model_op.Y, self.image_data)
        npt.assert_equal(self.model_op.Y_eff, self.image_data)

    def test_convolution(self):
        H_X_s = self.model_op.H(self.X_s)
        npt.assert_equal(
            H_X_s, self.numerics.convolution_class.convolution2d(self.X_s))
        H_T_X_s = self.model_op.H_T(self.X_s)
        conv_transpose = self.numerics.convolution_class.copy_transpose()
        npt.assert_equal(H_T_X_s, conv_transpose.convolution2d(self.X_s))

    def test_lensing(self):
        F_X_s = self.model_op.F(self.X_s)
        npt.assert_equal(F_X_s, self.lensing_op.source2image_2d(self.X_s))
        F_T_X_l = self.model_op.F_T(self.X_l)
        npt.assert_equal(F_T_X_l, self.lensing_op.image2source_2d(self.X_l))

    def test_wavelet_transform(self):
        # TODO : do more accurate tests here
        self.model_op.set_source_wavelet_scales(self.n_scales_source)
        self.model_op.set_lens_wavelet_scales(self.n_scales_lens)
        Phi_alpha_s = self.model_op.Phi_s(self.alpha_s)
        Phi_alpha_l = self.model_op.Phi_l(self.alpha_l)
        assert Phi_alpha_s.shape == (self.num_pix * self.subgrid_res_source,
                                     self.num_pix * self.subgrid_res_source)
        assert Phi_alpha_l.shape == (self.num_pix, self.num_pix)
        Phi_T_X_s = self.model_op.Phi_T_s(self.X_s)
        Phi_T_X_l = self.model_op.Phi_T_l(self.X_l)
        assert Phi_T_X_s.shape == (self.n_scales_source,
                                   self.num_pix * self.subgrid_res_source,
                                   self.num_pix * self.subgrid_res_source)
        assert Phi_T_X_l.shape == (self.n_scales_lens, self.num_pix,
                                   self.num_pix)
Exemple #4
0
class TestNoiseLevels(object):
    """
    tests the Lensing Operator classes
    """
    def setup(self):
        self.num_pix = 49  # cutout pixel size
        self.subgrid_res_source = 2
        self.num_pix_source = self.num_pix * self.subgrid_res_source
        self.background_rms = 0.05
        self.noise_map = self.background_rms * np.ones(
            (self.num_pix, self.num_pix))

        delta_pix = 0.24
        _, _, ra_at_xy_0, dec_at_xy_0, _, _, Mpix2coord, _ \
            = l_util.make_grid_with_coordtransform(numPix=self.num_pix, deltapix=delta_pix, subgrid_res=1,
                                                         inverse=False, left_lower=False)

        self.image_data = np.random.rand(self.num_pix, self.num_pix)
        kwargs_data = {
            'ra_at_xy_0': ra_at_xy_0,
            'dec_at_xy_0': dec_at_xy_0,
            'transform_pix2angle': Mpix2coord,
            'image_data': self.image_data,
            'background_rms': self.background_rms,
            'noise_map': self.noise_map,
        }
        data = ImageData(**kwargs_data)

        gaussian_func = Gaussian()
        x, y = l_util.make_grid(41, 1)
        gaussian = gaussian_func.function(x,
                                          y,
                                          amp=1,
                                          sigma=0.02,
                                          center_x=0,
                                          center_y=0)
        self.psf_kernel = gaussian / gaussian.sum()

        lens_model = LensModel(['SPEP'])
        self.kwargs_lens = [{
            'theta_E': 1,
            'gamma': 2,
            'center_x': 0,
            'center_y': 0,
            'e1': -0.05,
            'e2': 0.05
        }]

        # wavelets scales for lens and source
        self.n_scales_source = 4
        self.n_scales_lens = 3

        # list of source light profiles
        self.source_model = LightModel(['SLIT_STARLETS'])
        self.kwargs_source = [{'n_scales': self.n_scales_source}]

        # list of lens light profiles
        self.lens_light_model = LightModel(['SLIT_STARLETS'])
        self.kwargs_lens_light = [{'n_scales': self.n_scales_lens}]

        # get grid classes
        image_grid_class = NumericsSubFrame(data, PSF('NONE')).grid_class
        source_grid_class = NumericsSubFrame(
            data, PSF('NONE'),
            supersampling_factor=self.subgrid_res_source).grid_class

        # get a lensing operator
        self.lensing_op = LensingOperator(lens_model, image_grid_class,
                                          source_grid_class, self.num_pix)

        self.noise_class = NoiseLevels(
            data,
            subgrid_res_source=self.subgrid_res_source,
            include_regridding_error=False)
        self.noise_class_regrid = NoiseLevels(
            data,
            subgrid_res_source=self.subgrid_res_source,
            include_regridding_error=True)

    def test_background_rms(self):
        assert self.background_rms == self.noise_class.background_rms

    def test_noise_map(self):
        npt.assert_equal(self.noise_map, self.noise_class.noise_map)
        npt.assert_equal(self.noise_map, self.noise_class_regrid.noise_map)
        npt.assert_equal(self.noise_map, self.noise_class.effective_noise_map)

    def test_update_source_levels(self):
        wavelet_transform_source = lambda x: self.source_model.func_list[
            0].decomposition_2d(x, self.kwargs_source[0]['n_scales'])
        image2source_transform = lambda x: self.lensing_op.image2source_2d(
            x, kwargs_lens=self.kwargs_lens)
        upscale_transform = lambda x: x
        self.noise_class.update_source_levels(
            self.num_pix,
            self.num_pix_source,
            wavelet_transform_source,
            image2source_transform,
            upscale_transform,
            psf_kernel=None)  # without psf_kernel specified
        assert self.noise_class.levels_source.shape == (self.n_scales_source,
                                                        self.num_pix_source,
                                                        self.num_pix_source)
        self.noise_class.update_source_levels(self.num_pix,
                                              self.num_pix_source,
                                              wavelet_transform_source,
                                              image2source_transform,
                                              upscale_transform,
                                              psf_kernel=self.psf_kernel)
        assert self.noise_class.levels_source.shape == (self.n_scales_source,
                                                        self.num_pix_source,
                                                        self.num_pix_source)

    def test_update_image_levels(self):
        wavelet_transform_image = lambda x: self.lens_light_model.func_list[
            0].decomposition_2d(x, self.kwargs_lens_light[0]['n_scales'])
        self.noise_class.update_image_levels(self.num_pix,
                                             wavelet_transform_image)
        assert self.noise_class.levels_image.shape == (self.n_scales_lens,
                                                       self.num_pix,
                                                       self.num_pix)

    def test_update_regridding_error(self):
        magnification_map = self.lensing_op.magnification_map(self.kwargs_lens)
        self.noise_class.update_regridding_error(
            magnification_map)  # should do nothing
        npt.assert_equal(self.noise_class.effective_noise_map, self.noise_map)
        self.noise_class_regrid.update_regridding_error(magnification_map)
        npt.assert_equal(
            self.noise_class_regrid.effective_noise_map,
            np.sqrt(self.noise_map**2 +
                    self.noise_class_regrid.regridding_error_map**2))