Exemple #1
0
def get_spec(spec_file, spec_name, lab_mode, pre_):
    '''Get spec using args processed from inputs'''
    if lab_mode in TRAIN_MODES:
        if pre_ is None:  # new train trial
            spec = spec_util.get(spec_file, spec_name)
        else:
            # for resuming with train@{predir}
            # e.g. train@latest (fill find the latest predir)
            # e.g. train@data/reinforce_cartpole_2020_04_13_232521
            predir = pre_
            if predir == 'latest':
                predir = sorted(glob(f'data/{spec_name}*/'))[
                    -1]  # get the latest predir with spec_name
            _, _, _, _, experiment_ts = util.prepath_split(
                predir)  # get experiment_ts to resume train spec
            logger.info(f'Resolved to train@{predir}')
            spec = spec_util.get(spec_file, spec_name, experiment_ts)
    elif lab_mode == 'enjoy' or lab_mode == 'record':
        # for enjoy@{session_spec_file}
        # e.g. enjoy@data/reinforce_cartpole_2020_04_13_232521/reinforce_cartpole_t0_s0_spec.json
        session_spec_file = pre_
        assert session_spec_file is not None, 'enjoy/record mode must specify a `enjoy/record@{session_spec_file}`'
        spec = util.read(f'{session_spec_file}')
    else:
        raise ValueError(
            f'Unrecognizable lab_mode not of {TRAIN_MODES} or {EVAL_MODES}')
    return spec
Exemple #2
0
def test_trial_demo():
    spec = spec_util.get('demo.json', 'dqn_cartpole')
    spec_util.save(spec, unit='experiment')
    spec = spec_util.override_spec(spec, 'test')
    spec_util.tick(spec, 'trial')
    trial_metrics = Trial(spec).run()
    assert isinstance(trial_metrics, dict)
Exemple #3
0
def test_experiment():
    spec = spec_util.get('demo.json', 'dqn_cartpole')
    spec_util.save(spec, unit='experiment')
    spec = spec_util.override_spec(spec, 'test')
    spec_util.tick(spec, 'experiment')
    experiment_df = Experiment(spec).run()
    assert isinstance(experiment_df, pd.DataFrame)
Exemple #4
0
def run_by_mode(spec_file, spec_name, run_mode):
    spec = spec_util.get(spec_file, spec_name)
    # TODO remove when analysis can save all plotly plots
    os.environ['run_mode'] = run_mode
    if run_mode == 'search':
        Experiment(spec).run()
    elif run_mode == 'train':
        Trial(spec).run()
    elif run_mode == 'enjoy':
        # TODO turn on save/load model mode
        # Session(spec).run()
        pass
    elif run_mode == 'generate_benchmark':
        benchmarker.generate_specs(spec, const='agent')
    elif run_mode == 'benchmark':
        # TODO allow changing const to env
        run_benchmark(spec, const='agent')
    elif run_mode == 'dev':
        os.environ['PY_ENV'] = 'test'  # to not save in viz
        spec = util.override_dev_spec(spec)
        Trial(spec).run()
    else:
        logger.warn(
            'run_mode not recognized; must be one of `search, train, enjoy, benchmark, dev`.'
        )
Exemple #5
0
def run_trial_test(spec_file, spec_name=False):
    spec = spec_util.get(spec_file, spec_name)
    spec = spec_util.override_test_spec(spec)
    spec_util.tick(spec, 'trial')
    trial = Trial(spec)
    trial_metrics = trial.run()
    assert isinstance(trial_metrics, dict)
Exemple #6
0
def run_by_mode(spec_file, spec_name, lab_mode):
    logger.info(f'Running lab in mode: {lab_mode}')
    spec = spec_util.get(spec_file, spec_name)
    info_space = InfoSpace()
    analysis.save_spec(spec, info_space, unit='experiment')

    # '@' is reserved for 'enjoy@{prepath}'
    os.environ['lab_mode'] = lab_mode.split('@')[0]
    os.environ['PREPATH'] = util.get_prepath(spec, info_space)
    reload(logger)  # to set PREPATH properly

    if lab_mode == 'search':
        info_space.tick('experiment')
        Experiment(spec, info_space).run()
    elif lab_mode.startswith('train'):
        if '@' in lab_mode:
            prepath = lab_mode.split('@')[1]
            spec, info_space = util.prepath_to_spec_info_space(prepath)
        else:
            info_space.tick('trial')
        Trial(spec, info_space).run()
    elif lab_mode.startswith('enjoy'):
        prepath = lab_mode.split('@')[1]
        spec, info_space = util.prepath_to_spec_info_space(prepath)
        Session(spec, info_space).run()
    elif lab_mode.startswith('enjoy'):
        prepath = lab_mode.split('@')[1]
        spec, info_space = util.prepath_to_spec_info_space(prepath)
        Session(spec, info_space).run()
    elif lab_mode == 'dev':
        spec = util.override_dev_spec(spec)
        info_space.tick('trial')
        Trial(spec, info_space).run()
    else:
        logger.warn('lab_mode not recognized; must be one of `search, train, enjoy, benchmark, dev`.')
Exemple #7
0
def test_experiment(test_info_space):
    spec = spec_util.get('demo.json', 'dqn_cartpole')
    analysis.save_spec(spec, test_info_space, unit='experiment')
    spec = spec_util.override_test_spec(spec)
    test_info_space.tick('experiment')
    experiment_data = Experiment(spec, test_info_space).run()
    assert isinstance(experiment_data, pd.DataFrame)
Exemple #8
0
def test_on_policy_batch_memory(request):
    spec = spec_util.get('experimental/misc/base.json',
                         'base_on_policy_batch_memory')
    spec_util.tick(spec, 'trial')
    agent, env = make_agent_env(spec)
    res = (agent.body.memory, ) + request.param
    return res
Exemple #9
0
def test_prioritized_replay_memory(request):
    spec = spec_util.get('experimental/misc/base.json',
                         'base_prioritized_replay_memory')
    spec_util.tick(spec, 'trial')
    agent, env = make_agent_env(spec)
    res = (agent.body.memory, ) + request.param
    return res
Exemple #10
0
def run_by_mode(spec_file, spec_name, lab_mode):
    logger.info(f'Running lab in mode: {lab_mode}')
    spec = spec_util.get(spec_file, spec_name)
    info_space = InfoSpace()
    os.environ['PREPATH'] = util.get_prepath(spec, info_space)
    reload(logger)  # to set PREPATH properly
    # expose to runtime, '@' is reserved for 'enjoy@{prepath}'
    os.environ['lab_mode'] = lab_mode.split('@')[0]
    if lab_mode == 'search':
        info_space.tick('experiment')
        Experiment(spec, info_space).run()
    elif lab_mode == 'train':
        info_space.tick('trial')
        Trial(spec, info_space).run()
    elif lab_mode.startswith('enjoy'):
        prepath = lab_mode.split('@')[1]
        spec, info_space = util.prepath_to_spec_info_space(prepath)
        Session(spec, info_space).run()
    elif lab_mode == 'generate_benchmark':
        benchmarker.generate_specs(spec, const='agent')
    elif lab_mode == 'benchmark':
        # TODO allow changing const to env
        run_benchmark(spec, const='agent')
    elif lab_mode == 'dev':
        spec = util.override_dev_spec(spec)
        info_space.tick('trial')
        Trial(spec, info_space).run()
    else:
        logger.warn(
            'lab_mode not recognized; must be one of `search, train, enjoy, benchmark, dev`.'
        )
Exemple #11
0
def test_trial_demo(test_info_space):
    spec = spec_util.get('demo.json', 'dqn_cartpole')
    spec = spec_util.override_test_spec(spec)
    spec['env'][0]['save_frequency'] = 1
    test_info_space.tick('trial')
    trial_data = Trial(spec, test_info_space).run()
    assert isinstance(trial_data, pd.DataFrame)
Exemple #12
0
def test_vanilla_dqn():
    algo_name = 'unit_test_vanilla_dqn'
    spec = spec_util.get('test.json', 'unit_test_dqn')
    spec['name'] = algo_name
    spec['agent'][0]['algorithm']['name'] = "VanillaDQN"
    spec['meta']['max_episode'] = 25
    assert generic_algo_test(spec, algo_name) > 100
Exemple #13
0
def test_trial_demo(test_info_space):
    spec = spec_util.get('demo.json', 'dqn_cartpole')
    analysis.save_spec(spec, test_info_space, unit='experiment')
    spec = spec_util.override_test_spec(spec)
    spec['meta']['eval_frequency'] = 1
    test_info_space.tick('trial')
    trial_data = Trial(spec, test_info_space).run()
    assert isinstance(trial_data, pd.DataFrame)
Exemple #14
0
def run_trial_test(spec_file, spec_name=False):
    spec = spec_util.get(spec_file, spec_name)
    spec = util.override_test_spec(spec)
    info_space = InfoSpace()
    info_space.tick('trial')
    trial = Trial(spec, info_space)
    trial_data = trial.run()
    assert isinstance(trial_data, pd.DataFrame)
Exemple #15
0
def test_sarsa_recurrent():
    algo_name = 'unit_test_sarsa_recurrent'
    spec = spec_util.get('test.json', 'unit_test_sarsa')
    spec['agent'][0]['memory']['name'] = "OnPolicyNStepBatchReplay"
    spec['agent'][0]['memory']['length_history'] = 4
    spec['agent'][0]['net']['type'] = "RecurrentNet"
    spec['agent'][0]['net']['hid_layers'] = [64]
    assert generic_algo_test(spec, algo_name) > 100
Exemple #16
0
def test_actor_critic_recurrent_episodic_shared():
    algo_name = 'unit_test_actor_critic_recurrent_episodic_shared'
    spec = spec_util.get('test.json', 'unit_test_actor_critic')
    spec['name'] = algo_name
    spec['agent'][0]['memory']['name'] = "OnPolicyNStepReplay"
    spec['agent'][0]['memory']['length_history'] = 4
    spec['agent'][0]['net']['type'] = "Recurrentshared"
    spec['agent'][0]['net']['hid_layers'] = [16]
    assert generic_algo_test(spec, algo_name) > 100
Exemple #17
0
 def search(self, specfile, specname):
     "runs train mode multiple times across the parameterized specs"
     logger.info(
         f'Running lab mode:search with specfile:{specfile} specname:{specname}'
     )
     spec = spec_util.get(specfile, specname)
     # assert 'spec_params' in spec
     param_specs = spec_util.get_param_specs(spec)
     search.run_param_specs(param_specs)
Exemple #18
0
def main():
    # logger.set_level('DEBUG')
    spec = spec_util.get('dqn.json', 'dqn_cartpole')
    # spec = spec_util.get('dqn.json', 'dqn_cartpole_cartpole')
    # spec = spec_util.get('dqn.json', 'dqn_cartpole_multitask')
    # spec = spec_util.get('dqn.json', 'dqn_cartpole_cartpole_cartpole')
    # spec = spec_util.get('dqn.json', 'dqn_acrobot_cartpole')
    # spec = spec_util.get('dqn.json', 'dqn_2dball_cartpole')
    Trial(spec).run()
Exemple #19
0
 def train(self, specfile, specname):
     "enjoy + optimizes agent + periodic eval"
     logger.info(
         f'Running lab mode:train with specfile:{specfile} specname:{specname}'
     )
     spec = spec_util.get(specfile, specname)
     # FIXME Why does this need to be in env?
     os.environ['lab_mode'] = 'train'
     spec_util.save(spec)  # first save the new spec
     spec_util.tick(spec, 'trial')
     Trial(spec).run()
Exemple #20
0
def test_prioritized_replay_memory(request):
    memspec = spec_util.get('base.json', 'base_prioritized_replay_memory')
    memspec = util.override_test_spec(memspec)
    aeb_mem_space = AEBSpace(memspec, InfoSpace())
    env_space = EnvSpace(memspec, aeb_mem_space)
    aeb_mem_space.init_body_space()
    agent_space = AgentSpace(memspec, aeb_mem_space)
    agent = agent_space.agents[0]
    body = agent.nanflat_body_a[0]
    res = (body.memory, ) + request.param
    return res
Exemple #21
0
def test_prioritized_replay_memory(request):
    memspec = spec_util.get('base.json', 'base_prioritized_replay_memory')
    memspec = util.override_test_spec(memspec)
    aeb_mem_space = AEBSpace(memspec, InfoSpace())
    env_space = EnvSpace(memspec, aeb_mem_space)
    agent_space = AgentSpace(memspec, aeb_mem_space)
    aeb_mem_space.init_body_space()
    aeb_mem_space.post_body_init()
    agent = agent_space.agents[0]
    body = agent.nanflat_body_a[0]
    res = (body.memory, ) + request.param
    return res
Exemple #22
0
def run_trial_test(spec_file, spec_name=False, distributed=False):
    spec = spec_util.get(spec_file, spec_name)
    spec = util.override_test_spec(spec)
    info_space = InfoSpace()
    info_space.tick('trial')
    if distributed:
        spec['meta']['distributed'] = True
        if os.environ.get('CI') != 'true':  # CI has not enough CPU
            spec['meta']['max_session'] = 2
    trial = Trial(spec, info_space)
    trial_data = trial.run()
    assert isinstance(trial_data, pd.DataFrame)
Exemple #23
0
def test_demo_performance():
    spec = spec_util.get('demo.json', 'dqn_cartpole')
    spec_util.save(spec, unit='experiment')
    for env_spec in spec['env']:
        env_spec['max_frame'] = 2000
    spec_util.tick(spec, 'trial')
    trial = Trial(spec)
    spec_util.tick(spec, 'session')
    session = Session(spec)
    session.run()
    last_reward = session.agent.body.train_df.iloc[-1]['total_reward']
    assert last_reward > 50, f'last_reward is too low: {last_reward}'
Exemple #24
0
def read_spec_and_run(spec_file, spec_name, lab_mode):
    '''Read a spec and run it in lab mode'''
    logger.info(f'Running lab spec_file:{spec_file} spec_name:{spec_name} in mode:{lab_mode}')
    if lab_mode in TRAIN_MODES:
        spec = spec_util.get(spec_file, spec_name)
    else:  # eval mode
        lab_mode, prename = lab_mode.split('@')
        spec = spec_util.get_eval_spec(spec_file, prename)

    if 'spec_params' not in spec:
        run_spec(spec, lab_mode)
    else:  # spec is parametrized; run them in parallel using ray
        param_specs = spec_util.get_param_specs(spec)
        search.run_param_specs(param_specs)
Exemple #25
0
 def dev(self, specfile, specname):
     "train + limit the number of trials & sessions. Useful for iterative development."
     logger.info(
         f'Running lab mode:dev with specfile:{specfile} specname:{specname}'
     )
     spec = spec_util.get(specfile, specname)
     # FIXME Why does this need to be in env?
     os.environ['lab_mode'] = 'dev'
     spec_util.save(spec)  # first save the new spec
     # spec = spec_util.override_dev_spec(spec)
     spec['meta']['max_session'] = 1
     spec['meta']['max_trial'] = 2
     spec_util.tick(spec, 'trial')
     Trial(spec).run()
Exemple #26
0
def run_new_mode(spec_file, spec_name, lab_mode):
    '''Run to generate new data with `search, train, dev`'''
    spec = spec_util.get(spec_file, spec_name)
    info_space = InfoSpace()
    analysis.save_spec(spec, info_space, unit='experiment')  # first save the new spec
    if lab_mode == 'search':
        info_space.tick('experiment')
        Experiment(spec, info_space).run()
    elif lab_mode.startswith('train'):
        info_space.tick('trial')
        Trial(spec, info_space).run()
    elif lab_mode == 'dev':
        spec = spec_util.override_dev_spec(spec)
        info_space.tick('trial')
        Trial(spec, info_space).run()
    else:
        raise ValueError(f'Unrecognizable lab_mode not of {TRAIN_MODES}')
Exemple #27
0
def run_trial_test_dist(spec_file, spec_name=False):
    spec = spec_util.get(spec_file, spec_name)
    spec = spec_util.override_spec(spec, 'test')
    spec_util.tick(spec, 'trial')
    spec['meta']['distributed'] = 'synced'
    spec['meta']['max_session'] = 2

    trial = Trial(spec)
    # manually run the logic to obtain global nets for testing to ensure global net gets updated
    global_nets = trial.init_global_nets()
    # only test first network
    if ps.is_list(global_nets):  # multiagent only test first
        net = list(global_nets[0].values())[0]
    else:
        net = list(global_nets.values())[0]
    session_metrics_list = trial.parallelize_sessions(global_nets)
    trial_metrics = analysis.analyze_trial(spec, session_metrics_list)
    trial.close()
    assert isinstance(trial_metrics, dict)
Exemple #28
0
def run_trial_test_dist(spec_file, spec_name=False):
    spec = spec_util.get(spec_file, spec_name)
    spec = spec_util.override_test_spec(spec)
    info_space = InfoSpace()
    info_space.tick('trial')
    spec['meta']['distributed'] = True
    spec['meta']['max_session'] = 2

    trial = Trial(spec, info_space)
    # manually run the logic to obtain global nets for testing to ensure global net gets updated
    global_nets = trial.init_global_nets()
    # only test first network
    if ps.is_list(global_nets):  # multiagent only test first
        net = list(global_nets[0].values())[0]
    else:
        net = list(global_nets.values())[0]
    session_datas = trial.parallelize_sessions(global_nets)
    trial.session_data_dict = {data.index[0]: data for data in session_datas}
    trial_data = analysis.analyze_trial(trial)
    trial.close()
    assert isinstance(trial_data, pd.DataFrame)
Exemple #29
0
def run_by_mode(spec_file, spec_name, run_mode):
    spec = spec_util.get(spec_file, spec_name)
    if run_mode == 'search':
        Experiment(spec).run()
    elif run_mode == 'train':
        Trial(spec).run()
    elif run_mode == 'enjoy':
        # TODO turn on save/load model mode
        # Session(spec).run()
        pass
    elif run_mode == 'benchmark':
        # TODO need to spread benchmark over spec on Experiment
        pass
    elif run_mode == 'dev':
        os.environ['PY_ENV'] = 'test'  # to not save in viz
        logger.set_level('DEBUG')
        spec = util.override_dev_spec(spec)
        Trial(spec).run()
    else:
        logger.warn(
            'run_mode not recognized; must be one of `search, train, enjoy, benchmark, dev`.'
        )
Exemple #30
0
def test_spec():
    global spec
    spec = spec_util.get('base.json', 'base_case')
    spec['meta']['train_mode'] = True
    return spec
Exemple #31
0
def test_check():
    spec = spec_util.get('base.json', 'base_case')
    assert spec_util.check(spec)
Exemple #32
0
def test_spec():
    spec = spec_util.get('experimental/misc/base.json', 'base_case_openai')
    spec = spec_util.override_test_spec(spec)
    return spec
Exemple #33
0
def test_get():
    spec = spec_util.get('base.json', 'base_case')
    assert spec is not None
Exemple #34
0
def test_resolve_aeb(spec_name, aeb_list):
    spec = spec_util.get('base.json', spec_name)
    resolved_aeb_list = spec_util.resolve_aeb(spec)
    assert resolved_aeb_list == aeb_list
Exemple #35
0
def test_spec():
    global spec
    spec = spec_util.get('base.json', 'base_case')
    spec = util.override_test_spec(spec)
    return spec
Exemple #36
0
def run_trial_test(spec_file, spec_name):
    spec = spec_util.get(spec_file, spec_name)
    spec = util.override_test_spec(spec)
    trial = Trial(spec)
    trial_data = trial.run()
    assert isinstance(trial_data, pd.DataFrame)
Exemple #37
0
def test_trial_demo():
    spec = spec_util.get('demo.json', 'dqn_cartpole')
    spec = util.override_test_spec(spec)
    trial_data = Trial(spec).run()
    assert isinstance(trial_data, pd.DataFrame)